规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5g |
|
||
10g |
|
||
25g |
|
||
50g |
|
||
Other Sizes |
|
靶点 |
Human Endogenous Metabolite; Microbial Metabolite
|
---|---|
体外研究 (In Vitro) |
腺嘌呤核苷作用于四个 G 蛋白偶联受体:其中一个,A1 和 A3,主要与 Gi 家族 G 蛋白偶联;其中两个,A2A 和 A2B,主要与 G 蛋白偶联这些受体包括咖啡因入口的黄嘌呤所拮抗剂。通过这些受体,它影响许多细胞和器官,通常具有细胞保护功能[2]。腺苷是一种细胞外信号分子,由其前体分子 5'-三磷酸腺苷 (ATP) 生成) 和 5'-单磷酸腺苷 (AMP)[3]。 腺苷是 ATP 的常见代谢产物,在高浓度下表现出细胞毒性作用。 腺苷 (1.0- 4.0 mM;12-24 小时) 抑制细胞活力并触发 HepG2 细胞内质网白天[4]。 腺苷可诱导多种磷酸酯。 腺苷 (2.0 mM;12-24 小时) 在 HepG2 细胞中诱导自在 HepG2 细胞系中,腺苷诱导的 AMPK/mTOR 成功激活部分阻断了 ER 并减少了灭活细胞死亡[4]。
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Data regarding the absorption of adenosine are not readily available. Adenosine is predominantly eliminated in the urine as uric acid. Data regarding the volume of distribution of adenosine are not readily available. Data regarding the clearance of adenosine are not readily available. Intravenously administered adenosine is rapidly cleared from the circulation via cellular uptake, primarily by erythrocytes and vascular endothelial cells. This process involves a specific transmembrane nucleoside carrier system that is reversible, nonconcentrative, and bidirectionally symmetrical. As Adenocard requires no hepatic or renal function for its activation or inactivation, hepatic and renal failure would not be expected to alter its effectiveness or tolerability. Metabolism / Metabolites Adenosine can be phosphorylated by adenosine kinase to form adenosine monophosphate. From there, it is phosphorylated again by adenylate kinase 1 to form adenosine diphosphate, and again by nucleoside diphosphate kinase A or B to form adenosine triphosphate. Alternatively, adenosine can be deaminated by adenosine deaminase to form inosine. Iosine is phosphorylated by purine nucleoside phosphorylase to form hypoxanthine. Hypoxanthine undergoes oxidation by xanthine dehydrogenase twice to form the metabolites xanthine, followed by uric acid. Intracellular adenosine is rapidly metabolized either via phosphorylation to adenosine monophosphate by adenosine kinase, or via deamination to inosine by adenosine deaminase in the cytosol. Since adenosine kinase has a lower Km and Vmax than adenosine deaminase, deamination plays a significant role only when cytosolic adenosine saturates the phosphorylation pathway. Adenosine is rapidly metabolized intracellularly to the inactive metabolites adenosine monophosphate and inosine ... The drug is cleared by cellular uptake, principally by erythrocytes and vascular endothelial cells, via a specific transmembrane nucleoside transport system. Inosine formed by deamination of adenosine can leave the cell intact or can be degraded to hypoxanthine, xanthine, and ultimately uric acid. Adenosine monophosphate formed by phosphorylation of adenosine is incorporated into the high-energy phosphate pool. While extracellular adenosine is primarily cleared by cellular uptake, ... excessive amounts may be deaminated by an ecto-form of adenosine deaminase. Intracellular adenosine is rapidly metabolized either via phosphorylation to adenosine monophosphate by adenosine kinase, or via deamination to inosine by adenosine deaminase in the cytosol. Half Life: Less than 10 secs Biological Half-Life The half life of adenosine in blood is less than 10 seconds. ... The plasma half-life of adenosine is less than 10 seconds. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Adenosine slows conduction time through the AV node and can interrupt the reentry pathways through the AV node, resulting in the restoration of normal sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT), including PSVT associated with Wolff-Parkinson-White Syndrome. This effect may be mediated through the drug's activation of cell-surface A1 and A2 adenosine receptors. Adenosine also inhibits the slow inward calcium current and activation of adenylate cyclase in smooth muscle cells, thereby causing relaxation of vascular smooth muscle. By increasing blood flow in normal coronary arteries with little or no increase in stenotic arteries (with little to no increase in stenotic arteries), adenosine produces a relative difference in thallous (thallium) chloride TI 201 uptake in myocardium supplied by normal verus stenotic coronary arteries. Protein Binding Adenosine is bound to albumin in plasma, however data regarding the extent of binding are not readily available. Interactions The effects of adenosine are antagonized by methylxanthines such as caffeine and theophylline. In the presence of these methylxanthines, larger doses of adenosine may be required or adenosine may not be effective. Adenosine effects are potentiated by dipyridamole. Thus, smaller doses of adenosine may be effective in the presence of dipyridamole. Carbamazepine has been reported to increase the degree of heart block produced by other agents. As the primary effect of adenosine is to decrease conduction through the A-V node, higher degrees of heart block may be produced in the presence of carbamazepine. Non-Human Toxicity Values LD50 Mouse ip 500 mg/kg |
参考文献 | |
其他信息 |
Therapeutic Uses
Analgesics; Anti-Arrhythmia Agents; Vasodilator Agents Intravenous Adenocard (adenosine injection) is indicated for conversion to sinus rhythm of paroxysmal supraventricular tachycardia (PSVT), including that associated with accessory bypass tracts (Wolff-Parkinson-White Syndrome). When clinically advisable, appropriate vagal maneuvers (eg, Valsalva maneuver), should be attempted prior to Adenocard administration. /Included in US product label/ Adenocard does not convert atrial flutter, atrial fibrillation, or ventricular tachycardia to normal sinus rhythm. In the presence of atrial flutter or atrial fibrillation, a transient modest slowing of ventricular response may occur immediately following Adenocard administration. Intravenous Adenoscan is indicated as an adjunct to thallium-201 myocardial perfusion scintigraphy in patients unable to exercise adequately. /Included in US product label/ /Experimental Therapy:/ ... It has been shown that, in Japanese men, adenosine improves androgenetic alopecia due to the thickening of thin hair due to hair follicle miniaturization. To investigate the efficacy and safety of adenosine treatment to improve hair loss in women, 30 Japanese women with female pattern hair loss were recruited for this double-blind, randomized, placebo-controlled study. Volunteers used either 0.75% adenosine lotion or a placebo lotion topically twice daily for 12 months. Efficacy was evaluated by dermatologists and by investigators and in phototrichograms. As a result, adenosine was significantly superior to the placebo according to assessments by dermatologists and investigators and by self-assessments. Adenosine significantly increased the anagen hair growth rate and the thick hair rate. No side-effects were encountered during the trial. Adenosine improved hair loss in Japanese women by stimulating hair growth and by thickening hair shafts. Adenosine is useful for treating female pattern hair loss in women as well as androgenetic alopecia in men. Drug Warnings Contraindications include known hypersensitivity to adenosine, second- or third-degree AV block (except in patients with a functioning artificial pacemaker), sinus node disease, such as sick sinus syndrome or symptomatic bradycardia (except in patients with a functioning artificial pacemaker), and known or suspected bronchoconstrictive or bronchospastic lung disease (eg, asthma). Following iv injection of adenosine, new arrhythmias (ventricular premature complexes [VPCs], atrial premature complexes, atrial fibrillation, sinus bradycardia, sinus tachycardia, skipped beats, and varying degrees of AV nodal block) frequently appear at the time of conversion to normal sinus rhythm. These arrythmias generally last only a few seconds and resolve without intervention. However, transient or prolonged episodes of asystole, sometimes fatal, have been reported with iv injection of adenosine. Ventricular fibrillation has been reported rarely with iv injection of the drug, including both resuscitated and fatal events. In most cases, these adverse effects occurred in patients receiving concomitant therapy with digoxin or, less frequently, digoxin and verapamil, although a causal relationship has not been established. Some clinicians state that adenosine should not be used in patients with wide-complex tachycardias of unknown origin because of the risk of inducing potentially serious arrhythmias, including atrial fibrillation with a rapid ventricular rate or prolonged asystole with severe hypotension in preexcited tachycardias (eg, atrial flutter); the drug also may induce ventricular fibrillation in patients with severe coronary artery disease. Appropriate resuscitative measures should be readily available. For more Drug Warnings (Complete) data for Adenosine (16 total), please visit the HSDB record page. Pharmacodynamics Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy and also indicated for conversion of sinus rhythm of paroxysmal supraventricular tachycardia. Adenosine has a short duration of action as the half life is <10 seconds, and a wide therapeutic window. Patients should be counselled regarding the risk of cardiovascular side effects, bronchoconstriction, seizures, and hypersensitivity. |
分子式 |
C10H13N5O4
|
---|---|
分子量 |
267.2413
|
精确质量 |
267.096
|
元素分析 |
C, 44.94; H, 4.90; N, 26.21; O, 23.95
|
CAS号 |
58-61-7
|
相关CAS号 |
Adenosine-13C5; 159496-13-6; (R)-3-Hydroxybutanoic acid-13C2 sodium; 202114-54-3; Adenosine-1′-13C; 201996-55-6; Adenosine-13C; 54447-57-3; Adenosine-d2; 82741-17-1; Adenosine 5'-diphosphate disodium; 16178-48-6; Adenosine-d; 109923-50-4; Adenosine-15N5; 168566-57-2; Adenosine-2′-13C; 714950-52-4; Adenosine-3′-13C; 714950-53-5; Adenosine-d-1; 119540-53-3; Adenosine-d-2; Adenosine-13C10,15N5; 202406-75-5
|
PubChem CID |
60961
|
外观&性状 |
White to off-white solid powder
|
密度 |
2.1±0.1 g/cm3
|
沸点 |
676.3±65.0 °C at 760 mmHg
|
熔点 |
234-236ºC
|
闪点 |
362.8±34.3 °C
|
蒸汽压 |
0.0±2.2 mmHg at 25°C
|
折射率 |
1.907
|
LogP |
-1.02
|
tPSA |
139.54
|
氢键供体(HBD)数目 |
4
|
氢键受体(HBA)数目 |
8
|
可旋转键数目(RBC) |
2
|
重原子数目 |
19
|
分子复杂度/Complexity |
335
|
定义原子立体中心数目 |
4
|
SMILES |
O1[C@]([H])(C([H])([H])O[H])[C@]([H])([C@]([H])([C@]1([H])N1C([H])=NC2=C(N([H])[H])N=C([H])N=C12)O[H])O[H]
|
InChi Key |
OIRDTQYFTABQOQ-KQYNXXCUSA-N
|
InChi Code |
InChI=1S/C10H13N5O4/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(18)6(17)4(1-16)19-10/h2-4,6-7,10,16-18H,1H2,(H2,11,12,13)/t4-,6-,7-,10-/m1/s1
|
化学名 |
(2R,3R,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol
|
别名 |
NSC627048; NSC-627048; Adenosine; NSC 627048
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 27~33.3 mg/mL (101.0~124.7 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 6.67 mg/mL (24.96 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).
请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7420 mL | 18.7098 mL | 37.4195 mL | |
5 mM | 0.7484 mL | 3.7420 mL | 7.4839 mL | |
10 mM | 0.3742 mL | 1.8710 mL | 3.7420 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
The ARCTIC Trial: Aerosolized Inhaled Adenosine Treatment in Patients With Acute Respiratory Distress Syndrome (ARDS) Caused by COVID-19
CTID: NCT04588441
Phase: Phase 2   Status: Withdrawn
Date: 2024-05-06