| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 1mg |
|
||
| 5mg |
|
||
| 10mg |
|
||
| Other Sizes |
| 靶点 |
Cholesterol-desaturating agent; Secondary metabolite; microbial metabolite; secondary bile acid; endogenous metabolite
|
|---|---|
| 体外研究 (In Vitro) |
β-鼠胆酸(100µM;48小时)抑制原代小鼠肝细胞中的脂质积聚[1]。原代肝细胞中的 β-鼠胆酸荧光探针稀释液(100 μM;48 小时)[1]。
|
| 体内研究 (In Vivo) |
β-鼠胆酸(给予 0.5% β-鼠胆酸 8 周)可抑制大鼠饮食诱导或实验性胆酸 [2]。
束缚应激提高了NASH小鼠的肝脏和血清BA水平[1] 接下来,测量肝脏和血清BA水平,以研究血清中皮质酮和BA之间的相关性是否是应激挑战的结果。在MCD饮食下,应激显著增加了血清和肝脏BA水平[23.6-38.8μM(1.64倍)和0.399-0.673μmol/g肝脏(1.69倍)](图2A)。在MCS饮食条件下,应激倾向于提高肝脏BA水平[对照组和应激组分别为0.026和0.137μmol/g肝脏(5.26倍)](图2A)。此外,还研究了肝脏BA成分。MCD诱导的NASH中,肝脏牛磺β-胞浆酸(TβMCA)和牛磺胆酸(TCA)水平显著升高。然而,这些牛磺酸结合的BA在应激后没有变化(图2B)。MCD诱导的NASH中,肝牛磺脱氧胆酸(TCDCA)和牛磺脱氧烟酸(TDCA)水平没有变化(图2B)。有趣的是,非共轭BA和βMCA在应激后显著升高[1.14-3.46 nmol/g肝脏(3.03倍)],胆酸(CA)趋于升高[0.84-2.24 nmol/g肝(2.67倍)](图2B)。在测试的BA相关基因中,MCD饮食增加了细胞色素P450家族(CYP)7A1(CYP7A1)、溶质载体家族(SLC)51β(SLC51B,也称为有机溶质转运蛋白亚基β)和ATP结合盒(ABC)C4基因的肝脏表达水平(分别为3.56倍、11.73倍和7.09倍)(图2C)。在MCD饮食下,应激增强了SCL51B和ABCC4的表达(分别为11.73-15.55倍和7.09-14.47倍)(图2C)。有趣的是,在MCS饮食条件下,应激诱导了肝脏CYP7A1的表达(4.03倍)。研究结果可能表明,应激直接刺激肝脏Cyp7a1的诱导。其他BA相关因子的肝脏表达,即肝核因子4α(HNF4A)、富肝同源物1(LRH1)、法尼醇X受体(FXR)、小异二聚体伴侣(SHP)、CYP7B1、CYP8B1、CYP27A1、胆汁酸辅酶A:氨基酸N-酰基转移酶(BAAT)、ABCB11、ABCC2、SLC51A、ABCC3、ABCC5、SLC10A1和溶质载体有机阴离子1a1(SLCO1A1),在应激后均未在MCS或MCD组中发生变化(图2C)。在MCD应激组中观察到最高的肝脏CYP7A1蛋白水平(图2D)。有趣的是,血清BA和皮质酮水平与肝脏CYP7A1蛋白水平呈正相关,但与肝脏CYP5A1 mRNA水平无关(图2E)。这些结果表明,应激后NASH肝脏中存在皮质酮-CYP7A1蛋白-BA级联反应。 束缚应激通过升高肝脏βMCA水平降低NASH小鼠的肝脏脂质水平[1] 进行油红O染色,以研究应激是否会影响NASH发展过程中的肝脏脂质稳态。油红O染色显示,MCD应激组肝脏中的脂滴尺寸小于MCD非应激组肝脏(图4A)。此外,在应激挑战后,测量了血清和肝脏中的甘油三酯(TG)、总胆固醇(TChol)和NEFA水平。应激显著降低了MCD组的肝脏TG和NEFA水平[624-353 mg/g肝脏(0.57倍)和0.336-0.242 Eq/g肝脏(0.72倍)](图4B),但不影响肝脏中脂肪酸相关基因的表达(图4C)。然而,应激对肝脏TChol(图4B)和肝脏胆固醇相关基因表达水平(图S1B)没有影响。有趣的是,βMCA在暴露于棕榈酸(PA)/油酸(OA)后抑制了原代培养的小鼠肝细胞中的脂质积累,而CA则没有(图5A,B)。然而,经βMCA处理后,肝细胞中脂质相关基因的表达水平没有改变(图5C)。另一方面,PA/OA降低了CYP7A1 mRNA,在用βMCA治疗后,蛋白质水平趋于恢复(图5D,E)。这些结果表明,βMCA可以抑制NASH小鼠的肝脏脂质积聚。 |
| 细胞实验 |
原代肝细胞培养[1]
如前所述制备原代肝细胞。在皮质酮治疗中,用FBS阴性Williams培养基E饥饿2小时后,将肝细胞暴露于0.1%二甲亚砜作为载体和30-1000nM皮质酮中。六小时后,收集细胞并进行定量PCR和蛋白质印迹分析。对于脂质积聚,肝细胞暴露于0.2%异丙醇/1%乙醇/1%FBS溶液作为载体、100µM棕榈酸或100µM棕榈酸和100µM胆汁酸(βMCA或CA)。48小时后,收集细胞并进行定量PCR和蛋白质印迹分析。另一组细胞进行油红O染色。使用60%异丙醇溶液和油红O染料进行油红O染色。然后,用Mayer的苏木精溶液和纯伊红溶液进行苏木精和伊红(HE)染色。为了定量脂质积累,在油红O染色后,用40 mM HCl/异丙醇溶液从染色细胞中提取染料。通过测量500nm处的吸光度来确定染料浓度,并将其用作相对脂质量。 |
| 动物实验 |
Animal/Disease Models: 6-8 weeks, male C57L/J mice (litholithic diet (2% cholesterol and 0.5% cholic acid))[2]
Doses: 0.5% beta-murine cholic acid Route of Administration: Use 0.5% beta-murine cholic acid Results of 8 weeks of murine bile acid feeding diet: diminished gallstone prevalence to 20% by Dramatically reducing bile cholesterol secretion rate, saturation index and intestinal absorption, as well as inducing phase boundary movement and enlarged E-zone, preventing cholesterol Transition from liquid crystal phase to solid crystals and stones. |
| 参考文献 |
|
| 其他信息 |
Beta-muricholic acid is a member of the class of muricholic acids in which the hydroxy groups at positions 6 and 7 both have beta configuration. It is a member of muricholic acids, a 6beta-hydroxy steroid and a 7beta-hydroxy steroid. It is a conjugate acid of a beta-muricholate.
See also: beta-Muricholate (annotation moved to). In humans, NASH has been reported to elevate glycol-CA and TCA levels and reduce the ratio of secondary BAs/primary BAs. In the present study, the MCD diet decreased the ratio of TCDCA and TDCA levels/TβMCA and TCA levels in the mouse livers. As the hydrophilicity of BA is in the order conjugated BAs > unconjugated BAs and βMCA > CA > CDCA > DCA, these results may suggest that hydrophilic BA levels are upregulated in NASH. In addition, stress-increased hepatic βMCA and CA levels in NASH without elevated hepatic TβMCA and TCA levels. Furthermore, stress did not alter the expression of the Baat gene, which regulates the taurine conjugation of BA. Although the deconjugation reaction by gut flora needs to be considered, the observation supported the possibility that the stress-increased hepatic βMCA and CA levels result from the induction of Cyp7a1 gene expression, which is the rate-limiting enzyme of BA synthesis. FXR is a nuclear BA receptor that is strongly activated by CDCA and induces Shp expression to suppress Cyp7a1 gene expression. Although βMCA can negatively act on FXR activation, changes in SHP expression levels were not observed in NASH livers after stress challenge. In addition, the Hnf4a and Lrh1 gene expression levels, which upregulate Cyp7a1 gene expression, were not altered after the stress challenge. These results suggest that the stress induction of Cyp7a1 gene expression is mediated by other factors. Stress could contribute to the pathology changes in NASH through an increase in unconjugated BA levels. [1] In this study, under conditions of MCD-induced NASH, stress-elevated hepatic βMCA levels with enhanced CYP7A1 expression. Furthermore, treatment with βMCA protected against PA/OA-induced lipid accumulation in hepatocytes. Thus, the present study provides a view that CYP7A1-produced βMCA contributes to the suppression of lipid accumulation in hepatocytes, but it is still unknown how βMCA suppresses hepatic lipid accumulation. Since βMCA is murine BA and is not synthesized in humans, these phenomena could not be observed in human patients with NAFLD. However, the results may suggest that βMCA is available for NAFLD therapy.[1] In clinical research, it is difficult to assess the effect of stress on diseases mainly because no index defines stress. In this study, the serum glucocorticoid level was used as the stress index. However, serum glucocorticoid levels can change due to various factors as well as stress. The results in this study may not necessarily match the clinical data but provide the possibility that stress can decrease hepatic lipid levels in patients with NAFLD. In the future, a stress index should be required to further understand the molecular mechanism by which stress influences our bodies.[1] In conclusion, the present study demonstrated that stress influences hepatic BA and lipid homeostasis in NASH mice, indicating the possibility that βMCA is available for NASH therapy. It is expected that detailed molecular mechanisms will be elucidated to develop a NAFLD therapeutic drug.[1] Stress can affect our body and is known to lead to some diseases. However, the influence on the development of nonalcohol fatty liver disease (NAFLD) remains unknown. This study demonstrated that chronic restraint stress attenuated hepatic lipid accumulation via elevation of hepatic β-muricholic acid (βMCA) levels in the development of nonalcoholic steatohepatitis (NASH) in mice. Serum cortisol and corticosterone levels, i.e., human and rodent stress markers, were correlated with serum bile acid levels in patients with NAFLD and methionine- and choline-deficient (MCD) diet-induced mice, respectively, suggesting that stress is related to bile acid (BA) homeostasis in NASH. In the mouse model, hepatic βMCA and cholic acid (CA) levels were increased after the stress challenge. Considering that a short stress enhanced hepatic CYP7A1 protein levels in normal mice and corticosterone increased CYP7A1 protein levels in primary mouse hepatocytes, the enhanced Cyp7a1 expression was postulated to be involved in the chronic stress-increased hepatic βMCA level. Interestingly, chronic stress decreased hepatic lipid levels in MCD-induced NASH mice. Furthermore, βMCA suppressed lipid accumulation in mouse primary hepatocytes exposed to palmitic acid/oleic acid, but CA did not. In addition, Cyp7a1 expression seemed to be related to lipid accumulation in hepatocytes. In conclusion, chronic stress can change hepatic lipid accumulation in NASH mice, disrupting BA homeostasis via induction of hepatic Cyp7a1 expression. This study discovered a new βMCA action in the liver, indicating the possibility that βMCA is available for NAFLD therapy.[1] This study investigated whether beta-muricholic acid, a natural trihydroxy hydrophilic bile acid of rodents, acts as a biliary cholesterol-desaturating agent to prevent cholesterol gallstones and if it facilitates the dissolution of gallstones compared with ursodeoxycholic acid (UDCA). For gallstone prevention study, gallstone-susceptible male C57L mice were fed 8 weeks with a lithogenic diet (2% cholesterol and 0.5% cholic acid) with or without 0.5% UDCA or beta-muricholic acid. For gallstone dissolution study, additional groups of mice that have formed gallstones were fed chow with or without 0.5% beta-muricholic acid or UDCA for 8 weeks. One hundred percent of mice fed the lithogenic diet formed cholesterol gallstones. Addition of beta-muricholic acid and UDCA decreased gallstone prevalence to 20% and 50% through significantly reducing biliary secretion rate, saturation index, and intestinal absorption of cholesterol, as well as inducing phase boundary shift and an enlarged Region E that prevented the transition of cholesterol from its liquid crystalline phase to solid crystals and stones. Eight weeks of beta-muricholic acid and UDCA administration produced complete gallstone dissolution rates of 100% and 60% compared with the chow (10%). We conclude that beta-muricholic acid is more effective than UDCA in treating or preventing diet-induced or experimental cholesterol gallstones in mice.[2] |
| 分子式 |
C24H40O5
|
|---|---|
| 分子量 |
408.5714
|
| 精确质量 |
408.288
|
| CAS号 |
2393-59-1
|
| PubChem CID |
5283853
|
| 外观&性状 |
White to light yellow solid powder
|
| 密度 |
1.184g/cm3
|
| 沸点 |
565.7ºC at 760mmHg
|
| 闪点 |
310ºC
|
| 蒸汽压 |
3.75E-15mmHg at 25°C
|
| 折射率 |
1.558
|
| LogP |
3.448
|
| tPSA |
97.99
|
| 氢键供体(HBD)数目 |
4
|
| 氢键受体(HBA)数目 |
5
|
| 可旋转键数目(RBC) |
4
|
| 重原子数目 |
29
|
| 分子复杂度/Complexity |
637
|
| 定义原子立体中心数目 |
11
|
| SMILES |
C[C@H](CCC(=O)O)[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2[C@H]([C@H]([C@H]4[C@@]3(CC[C@H](C4)O)C)O)O)C
|
| InChi Key |
DKPMWHFRUGMUKF-CRKPLTDNSA-N
|
| InChi Code |
InChI=1S/C24H40O5/c1-13(4-7-19(26)27)15-5-6-16-20-17(9-11-23(15,16)2)24(3)10-8-14(25)12-18(24)21(28)22(20)29/h13-18,20-22,25,28-29H,4-12H2,1-3H3,(H,26,27)/t13-,14-,15-,16+,17+,18+,20+,21+,22-,23-,24-/m1/s1
|
| 化学名 |
(4R)-4-[(3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
|
| 别名 |
beta-muricholic acid; 2393-59-1; b-Muricholic acid; beta-MCA; 5beta-Cholanic acid-3alpha,6beta,7beta-triol; (3a,5b,6b,7b)-3,6,7-trihydroxy-Cholan-24-oic acid; 3alpha,6beta,7beta-Trihydroxy-5beta-cholan-24-oic Acid; (4R)-4-[(3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid;
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO : ~100 mg/mL (~244.76 mM)
|
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.12 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (6.12 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (6.12 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.4476 mL | 12.2378 mL | 24.4756 mL | |
| 5 mM | 0.4895 mL | 2.4476 mL | 4.8951 mL | |
| 10 mM | 0.2448 mL | 1.2238 mL | 2.4476 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。