ALC-0315

别名: ALC 0315; ALC-0315; ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate); Lipid ALC-0315; ALC-0315 (Excipient); ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl) bis(2-hexyldecanoate); AVX8DX713V; 6-[6-(2-hexyldecanoyloxy)hexyl-(4-hydroxybutyl)amino]hexyl 2-hexyldecanoate; ALC0315
目录号: V2455 纯度: ≥98%
ALC-0315 (ALC0315;ALC 0315) 是一种合成的无色油性阳离子脂质和可电离的氨基脂质,与其他脂质结合使用形成脂质纳米颗粒 (LNP) 作为非病毒基因传递系统。
ALC-0315 CAS号: 2036272-55-4
产品类别: Liposome
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
ALC-0315 (ALC0315;ALC 0315) 是一种合成的无色油性阳离子脂质和可电离的氨基脂质,与其他脂质结合形成脂质纳米颗粒 (LNP) 作为非病毒基因传递系统。这些 LNP 可用于 mRNA 压实并帮助 mRNA 细胞递送,例如递送 COVID-19 疫苗(SARS-CoV-2 疫苗)。
生物活性&实验参考方法
靶点
ionizable cationic lipid; RNA delivery
体外研究 (In Vitro)
为了创建用于免疫研究的剂量纳米颗粒,采用了 ALC-0315 。ALC-0315是一种可电离的氨基脂质,负责mRNA的压缩,并通过可疑的内体失稳帮助mRNA的细胞递送及其细胞质释放。Moderna新冠肺炎疫苗中的可电离脂质没有公开,但它很可能是十七烷-9-yl8-((2-羟乙基)(6-氧代-6-(十一酰氧基)己基)氨基)辛酸酯。[1].hr> 可电离的阳离子脂质对于脂质纳米颗粒(LNPs)在体内有效递送RNA至关重要。DLin-MC3-DMA(MC3)、ALC-0315和SM-102是目前临床上唯一批准用于RNA治疗的可电离阳离子脂质。ALC-0315和SM-102是严重急性呼吸系统综合征冠状病毒2型mRNA疫苗中使用的结构相似的脂质,而MC3用于siRNA治疗以敲除肝细胞中的转甲状腺素蛋白。肝细胞和肝星状细胞(HSC)是RNA治疗特别有吸引力的靶点,因为它们合成许多血浆蛋白,包括那些影响凝血的蛋白。虽然LNPs优先在肝脏中积累,但评估不同可电离阳离子脂质将RNA货物递送到不同细胞群的能力对于设计具有最小肝毒性的RNA-LNP疗法非常重要。在这里,我们直接比较了含有ALC-0315或MC3的LNPs对肝细胞中凝血因子VII(FVII)和HSC中ADAMTS13的敲除作用。在小鼠中,当siRNA剂量为1mg/kg时,与MC3的LNPs相比,ALC-0315的LNPs对FVII和ADAMTS13的敲除分别高出2倍和10倍。在高剂量(5mg/kg)下,ALC-0315 LNPs增加了肝毒性标志物(ALT和胆汁酸),而相同剂量的MC3 LNPs则没有。这些结果表明,ALC-0315 LNPs在小鼠肝细胞和HSC中实现了siRNA介导的靶蛋白的有效敲除,尽管在高剂量后可以观察到肝毒性的标志物。本研究提供了一个初步的比较,可能为开发具有最大疗效和有限毒性的可电离阳离子LNP疗法提供信息。[2]
体内研究 (In Vivo)
在小鼠中,当siRNA剂量为1mg/kg时,与MC3的LNPs相比,ALC-0315的LNPs对FVII和ADAMTS13的敲除分别高出2倍和10倍。在高剂量(5mg/kg)下,ALC-0315 LNPs增加了肝毒性标志物(ALT和胆汁酸),而相同剂量的MC3 LNPs则没有。这些结果表明,ALC-0315 LNPs在小鼠肝细胞和HSC中实现了siRNA介导的靶蛋白的有效敲除,尽管在高剂量后可以观察到肝毒性的标志物。本研究提供了一个初步的比较,可能为开发具有最大疗效和有限毒性的可电离阳离子LNP疗法提供信息。[2]
与MC3相比,ALC-0315在肝细胞中实现了更有效的siRNA介导的敲除。[2]
与用siLuc-ALC-0315或siLuc-MC3治疗的对照组小鼠相比,用1 mg/kg siFVII包裹在含有ALC-0315或MC3(分别为siFVII-ALC-0315或siFVII-MC3)的LNPs中的小鼠表现出FVII mRNA的显著敲除(图1A)。与用siFVII-MC3治疗的小鼠(15.3±3%残留mRNA,P=0.002)相比,用相同剂量的siFVII-ALC-0315治疗的小鼠具有更大的FVII mRNA敲除(1.6±0.3%残留mRNA,P=0.0004)(图1)。siFVII-ALC-0315(18±8%,P=0.003)和siFVII-MC3(6±2%血浆蛋白,P=0.02)治疗小鼠的血浆蛋白水平没有显著差异(图1B)。 雄性和雌性小鼠之间没有发现差异。定量siRNA在LNPs内的包封,siFVII-MC3(88%)、siFVII-ALC-0315(78%)、siLuc-MC3(90%)和siLuc-ALC-0315(66%)之间的RNA载量没有实质性差异。
ALC-0315在HSC中实现了siRNA介导的敲除,而MC3的敲除作用很小。[2]
与用siADAMTS13-MC3治疗的小鼠(86±18%的残余mRNA,P=0.221,75±9.5%的血浆蛋白,P=0.274)相比,用相同剂量的siADAMTS17-ALC-0315治疗的小鼠具有更大的FVII mRNA和蛋白质敲除(31±13%的残余mRNA(P=0.038)和40±20%的血浆蛋白(P=0.060))(图2A-B)。因此,用siADAMTS13-ALC-0315处理的小鼠导致ADAMTS13 mRNA表达下降69%,而用siADATS13-MC3处理的小鼠没有统计学意义的下降。
酶活实验
通过测量荧光底物的切割速率来测定血浆中ADAMTS13的酶活性(图2C)。用siLuc-MC3和siLuc-ALC-0315处理的小鼠样本显示出高ADAMTS13活性(分别为5.2±0.04和3.7±0.04 RFU/sec),在ADAMTS13活动抑制剂EDTA的存在下被淬灭。siADAMTS13-ALC-0315和siADAMTS16-MC3处理的小鼠血浆均显示ADAMTS13活性降低(分别为0.42±0.02 RFU/sec和2.4±0.05 RFU/sec,均P<0.05),表明与各自的siLuc处理组相比,活性显著降低。各组没有能力检测性别差异的统计学意义,然而,男性和女性之间的击倒似乎是相同的。siADAMTS13-MC3(94%)、siADAMTS13C-ALC-0315(82%)、siLuc-MC3(93%)和siLuc-ALC-0315(80%)之间的RNA负载量也没有实质性差异。[2]
细胞实验
为了验证ADAMTS13在HSC中被敲除,在用siLuc或包裹在ALC-0315LNPs中的siADAMTS13处理的小鼠肝脏分离的HSC中测量了ADAMTS13 mRNA。通过qPCR检测编码ADAMTS13的mRNA和管家基因Ppia。提取的RNA产量较低,对应于分离的细胞数量较少,但在用siLuc和siADAMTS13处理的小鼠样本中,Ppia的检测(循环阈值)相似(分别为32.5±1.19和32.1±0.76);在用siLuc处理的小鼠样本中检测到ADAMTS13 mRNA(44.4±4.6),但在用siADAMTS13处理的小鼠HSC提取的RNA中没有检测到,最多55个扩增周期。[2]
动物实验
LNP-siRNA injections[2]
siFVII, siADAMTS13, and siLuc were encapsulated in LNPs containing either ALC-0315 or MC3 as the ionizable cationic lipid. We injected mice with 1 mg siRNA per kg body weight (mg/kg) for knockdown studies, and 5 mg/kg dose for toxicity studies. A dose of 1 mg/kg siRNA in mice is standard for inducing knockdown of mRNA for proteins made in hepatocytes using siRNA-LNPs, whereas 5 mg/kg is a higher dose than the one that would normally be used in mice.3 The recommended dose of ONPATTRO (the clinically approved siRNA for hATTR) is 0.3 mg/kg, which corresponds to a human equivalent dose (HED) of 3.69 mg/kg in mice when using body surface area conversion. One week after administration, liver tissue and blood were collected to measure target mRNA and protein levels, respectively, and compared to siLuc-treated mice; half-lives of plasma FVII and ADAMTS13 are 3–6 hours, and 2–3 days, respectively.23,24 mRNA and protein quantification, and toxicity studies are described further below.
Toxicological analysis[2]
Mice were injected IV with either PBS, or with siLuc encapsulated in LNPs with ALC-0315 (siLuc-ALC-0315) or MC3 (siLuc-MC3) at 5 mg/kg (N = 4). While a dose of any LNP at 10 mg/kg usually causes severe toxicity, such as inflammation and liver necrosis, the toxicity after a 5 mg/kg dose depends on the lipid formulation.26,27 Five hours after the injection, mice were sacrificed, and serum samples were collected as described above. Serum samples were submitted to Idexx BioAnalytics for a toxicology panel. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), bile acids, total bilirubin (TBIL), blood urea nitrogen (BUN), creatine (CREA), gamma-glutamyl transferase (GGT) levels were analyzed. To note, data regarding bile acid levels in mice treated with PBS and with siLuc-ALC-0315 had N = 3 due to the presence of an outlier in each group (data not shown). The presence of the outliers would have not altered the conclusion, siLuc-ALC-0315 treated mice would have had an even higher bile acid mean and would have been more statistically significant from the PBS-treated mice. Outliers were determined via the ROUT method using GraphPad Prism although limitations such as our small sample size were considered. Bile acid levels commonly range from 0 to 6 μmol/L; however, our results were likely not biologically possible (>130 μmol/L).
参考文献

[1]. Moghimi SM. Allergic Reactions and Anaphylaxis to LNP-Based COVID-19 Vaccines. Mol Ther. 2021;29(3):898-900.

[2]. Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm. 2022;19(7):2175-2182.

其他信息
This leaves LNPs and other excipients as possible sources of allergens. The list of disclosed excipients in the Pfizer-BioNTech COVID-19 vaccine includes sucrose, sodium chloride, potassium chloride, disodium phosphate dihydrate, potassium dihydrogen phosphate, and water for injection. In the Moderna COVID-19 vaccine, the excipients are tromethamine, tromethamine hydrochloride, acetic acid, sodium acetate, and sucrose.11 Collectively these excipients are not classified as allergens. The LNPs in the Pfizer-BioNTech vaccine comprise four components: cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), ALC-0315 [(4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2- hexyldecanoate)], and ALC-0159 (2-[(polyethylene glycol)2000]-N,N-ditetradecylacetamide). The first two components have been widely used in regulatory approved liposomal medicines (e.g., Doxil) and are also features in the Moderna COVID-19 vaccine. ALC-0315 is an ionisable aminolipid that is responsible for mRNA compaction and aids mRNA cellular delivery and its cytoplasmic release through suspected endosomal destabilization. The ionisable lipid in the Moderna COVID-19 vaccine is not disclosed, but it is most likely heptadecan-9-yl8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate. The LNPs in the Pfizer-BioNTech COVID-19 vaccine contain low levels (<2 mol %) of ALC-0159, which contributes to nanoparticle stabilization by a steric mechanism through its poly(ethylene glycol) (PEG) moiety. In the Moderna COVID-19 vaccine, ALC-0159 is replaced with another PEGylated lipid (1,2-dimyristoyl-rac-glycero-3-methoxyPEG2000). There are speculations on a possible role for ALC-0159 (the PEGylated lipid) in triggering anaphylaxis, based on earlier reported anaphylactic reactions in some recipients of intravenously infused PEGylated nanomedicines.12 For example, with PEGylated nanomedicines such as Doxil, complement activation was initially thought to account for anaphylactoid reactions (the so-called complement activation-related pseudoallergy [CARPA] hypothesis); however, the validity of CARPA has been recently questioned and, instead, a direct role for macrophages and other immune cells have been proposed.13,14 Anaphylatoxins might play minor roles in potentiating anaphylactoid reactions; for instance, intradermal injection of low doses of anaphylatoxins (C3a, C4a, or C5a) in healthy volunteers was shown to induce immediate wheal-and-flare reactions.6 If LNP-based vaccines can trigger immediate local complement activation, then complement activation is expected to proceed in almost all vaccine recipients, but anaphylaxis with the Pfizer-BioNTech and Moderna vaccines is very rare, and complement activation alone cannot account for anaphylaxis episodes. With PEGylated nanomedicines such as pegnivacogin, anaphylactic reactions have been most notable in individuals with high titers of anti-PEG immunoglobulin G (IgG), but, again, not all individuals with high levels of such antibodies experienced allergic reactions.15 Thus, there are either inter-individual differences in susceptibility to antibody-triggered reactions or differences in the properties of anti-PEG antibodies. Nonetheless, the molecular basis of these reactions in humans remains unknown, but, in the murine model, antigen-induced anaphylaxis appears to proceed through the IgG, low-affinity FcγRIII, effector cells, and platelet-activating factor pathway.[1]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C48H95NO5
分子量
766.29
精确质量
765.721
元素分析
C, 75.24; H, 12.50; N, 1.83; O, 10.44
CAS号
2036272-55-4
PubChem CID
122666778
外观&性状
Colorless to light yellow oily liquid
密度
0.9±0.1 g/cm3
沸点
760.6±55.0 °C at 760 mmHg
闪点
413.8±31.5 °C
蒸汽压
0.0±5.8 mmHg at 25°C
折射率
1.472
LogP
17.56
tPSA
76.1Ų
氢键供体(HBD)数目
1
氢键受体(HBA)数目
6
可旋转键数目(RBC)
46
重原子数目
54
分子复杂度/Complexity
718
定义原子立体中心数目
0
SMILES
O(CCCCCCN(CCCCO)CCCCCCOC(C(CCCCCC)CCCCCCCC)=O)C(C(CCCCCC)CCCCCCCC)=O
InChi Key
QGWBEETXHOVFQS-UHFFFAOYSA-N
InChi Code
InChI=1S/C48H95NO5/c1-5-9-13-17-19-27-37-45(35-25-15-11-7-3)47(51)53-43-33-23-21-29-39-49(41-31-32-42-50)40-30-22-24-34-44-54-48(52)46(36-26-16-12-8-4)38-28-20-18-14-10-6-2/h45-46,50H,5-44H2,1-4H3
化学名
[(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)
别名
ALC 0315; ALC-0315; ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate); Lipid ALC-0315; ALC-0315 (Excipient); ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl) bis(2-hexyldecanoate); AVX8DX713V; 6-[6-(2-hexyldecanoyloxy)hexyl-(4-hydroxybutyl)amino]hexyl 2-hexyldecanoate; ALC0315
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
Ethanol : ~100 mg/mL (~130.50 mM)
DMSO : ~50 mg/mL (~65.25 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (3.26 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.5 mg/mL (3.26 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (3.26 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.3050 mL 6.5249 mL 13.0499 mL
5 mM 0.2610 mL 1.3050 mL 2.6100 mL
10 mM 0.1305 mL 0.6525 mL 1.3050 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们