规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
ionizable cationic lipid; RNA delivery
|
---|---|
体外研究 (In Vitro) |
为了创建用于免疫研究的剂量纳米颗粒,采用了 ALC-0315 。ALC-0315是一种可电离的氨基脂质,负责mRNA的压缩,并通过可疑的内体失稳帮助mRNA的细胞递送及其细胞质释放。Moderna新冠肺炎疫苗中的可电离脂质没有公开,但它很可能是十七烷-9-yl8-((2-羟乙基)(6-氧代-6-(十一酰氧基)己基)氨基)辛酸酯。[1].hr>
可电离的阳离子脂质对于脂质纳米颗粒(LNPs)在体内有效递送RNA至关重要。DLin-MC3-DMA(MC3)、ALC-0315和SM-102是目前临床上唯一批准用于RNA治疗的可电离阳离子脂质。ALC-0315和SM-102是严重急性呼吸系统综合征冠状病毒2型mRNA疫苗中使用的结构相似的脂质,而MC3用于siRNA治疗以敲除肝细胞中的转甲状腺素蛋白。肝细胞和肝星状细胞(HSC)是RNA治疗特别有吸引力的靶点,因为它们合成许多血浆蛋白,包括那些影响凝血的蛋白。虽然LNPs优先在肝脏中积累,但评估不同可电离阳离子脂质将RNA货物递送到不同细胞群的能力对于设计具有最小肝毒性的RNA-LNP疗法非常重要。在这里,我们直接比较了含有ALC-0315或MC3的LNPs对肝细胞中凝血因子VII(FVII)和HSC中ADAMTS13的敲除作用。在小鼠中,当siRNA剂量为1mg/kg时,与MC3的LNPs相比,ALC-0315的LNPs对FVII和ADAMTS13的敲除分别高出2倍和10倍。在高剂量(5mg/kg)下,ALC-0315 LNPs增加了肝毒性标志物(ALT和胆汁酸),而相同剂量的MC3 LNPs则没有。这些结果表明,ALC-0315 LNPs在小鼠肝细胞和HSC中实现了siRNA介导的靶蛋白的有效敲除,尽管在高剂量后可以观察到肝毒性的标志物。本研究提供了一个初步的比较,可能为开发具有最大疗效和有限毒性的可电离阳离子LNP疗法提供信息。[2]
|
体内研究 (In Vivo) |
在小鼠中,当siRNA剂量为1mg/kg时,与MC3的LNPs相比,ALC-0315的LNPs对FVII和ADAMTS13的敲除分别高出2倍和10倍。在高剂量(5mg/kg)下,ALC-0315 LNPs增加了肝毒性标志物(ALT和胆汁酸),而相同剂量的MC3 LNPs则没有。这些结果表明,ALC-0315 LNPs在小鼠肝细胞和HSC中实现了siRNA介导的靶蛋白的有效敲除,尽管在高剂量后可以观察到肝毒性的标志物。本研究提供了一个初步的比较,可能为开发具有最大疗效和有限毒性的可电离阳离子LNP疗法提供信息。[2]
与MC3相比,ALC-0315在肝细胞中实现了更有效的siRNA介导的敲除。[2] 与用siLuc-ALC-0315或siLuc-MC3治疗的对照组小鼠相比,用1 mg/kg siFVII包裹在含有ALC-0315或MC3(分别为siFVII-ALC-0315或siFVII-MC3)的LNPs中的小鼠表现出FVII mRNA的显著敲除(图1A)。与用siFVII-MC3治疗的小鼠(15.3±3%残留mRNA,P=0.002)相比,用相同剂量的siFVII-ALC-0315治疗的小鼠具有更大的FVII mRNA敲除(1.6±0.3%残留mRNA,P=0.0004)(图1)。siFVII-ALC-0315(18±8%,P=0.003)和siFVII-MC3(6±2%血浆蛋白,P=0.02)治疗小鼠的血浆蛋白水平没有显著差异(图1B)。 雄性和雌性小鼠之间没有发现差异。定量siRNA在LNPs内的包封,siFVII-MC3(88%)、siFVII-ALC-0315(78%)、siLuc-MC3(90%)和siLuc-ALC-0315(66%)之间的RNA载量没有实质性差异。 ALC-0315在HSC中实现了siRNA介导的敲除,而MC3的敲除作用很小。[2] 与用siADAMTS13-MC3治疗的小鼠(86±18%的残余mRNA,P=0.221,75±9.5%的血浆蛋白,P=0.274)相比,用相同剂量的siADAMTS17-ALC-0315治疗的小鼠具有更大的FVII mRNA和蛋白质敲除(31±13%的残余mRNA(P=0.038)和40±20%的血浆蛋白(P=0.060))(图2A-B)。因此,用siADAMTS13-ALC-0315处理的小鼠导致ADAMTS13 mRNA表达下降69%,而用siADATS13-MC3处理的小鼠没有统计学意义的下降。 |
酶活实验 |
通过测量荧光底物的切割速率来测定血浆中ADAMTS13的酶活性(图2C)。用siLuc-MC3和siLuc-ALC-0315处理的小鼠样本显示出高ADAMTS13活性(分别为5.2±0.04和3.7±0.04 RFU/sec),在ADAMTS13活动抑制剂EDTA的存在下被淬灭。siADAMTS13-ALC-0315和siADAMTS16-MC3处理的小鼠血浆均显示ADAMTS13活性降低(分别为0.42±0.02 RFU/sec和2.4±0.05 RFU/sec,均P<0.05),表明与各自的siLuc处理组相比,活性显著降低。各组没有能力检测性别差异的统计学意义,然而,男性和女性之间的击倒似乎是相同的。siADAMTS13-MC3(94%)、siADAMTS13C-ALC-0315(82%)、siLuc-MC3(93%)和siLuc-ALC-0315(80%)之间的RNA负载量也没有实质性差异。[2]
|
细胞实验 |
为了验证ADAMTS13在HSC中被敲除,在用siLuc或包裹在ALC-0315LNPs中的siADAMTS13处理的小鼠肝脏分离的HSC中测量了ADAMTS13 mRNA。通过qPCR检测编码ADAMTS13的mRNA和管家基因Ppia。提取的RNA产量较低,对应于分离的细胞数量较少,但在用siLuc和siADAMTS13处理的小鼠样本中,Ppia的检测(循环阈值)相似(分别为32.5±1.19和32.1±0.76);在用siLuc处理的小鼠样本中检测到ADAMTS13 mRNA(44.4±4.6),但在用siADAMTS13处理的小鼠HSC提取的RNA中没有检测到,最多55个扩增周期。[2]
|
动物实验 |
LNP-siRNA injections[2]
siFVII, siADAMTS13, and siLuc were encapsulated in LNPs containing either ALC-0315 or MC3 as the ionizable cationic lipid. We injected mice with 1 mg siRNA per kg body weight (mg/kg) for knockdown studies, and 5 mg/kg dose for toxicity studies. A dose of 1 mg/kg siRNA in mice is standard for inducing knockdown of mRNA for proteins made in hepatocytes using siRNA-LNPs, whereas 5 mg/kg is a higher dose than the one that would normally be used in mice.3 The recommended dose of ONPATTRO (the clinically approved siRNA for hATTR) is 0.3 mg/kg, which corresponds to a human equivalent dose (HED) of 3.69 mg/kg in mice when using body surface area conversion. One week after administration, liver tissue and blood were collected to measure target mRNA and protein levels, respectively, and compared to siLuc-treated mice; half-lives of plasma FVII and ADAMTS13 are 3–6 hours, and 2–3 days, respectively.23,24 mRNA and protein quantification, and toxicity studies are described further below. Toxicological analysis[2] Mice were injected IV with either PBS, or with siLuc encapsulated in LNPs with ALC-0315 (siLuc-ALC-0315) or MC3 (siLuc-MC3) at 5 mg/kg (N = 4). While a dose of any LNP at 10 mg/kg usually causes severe toxicity, such as inflammation and liver necrosis, the toxicity after a 5 mg/kg dose depends on the lipid formulation.26,27 Five hours after the injection, mice were sacrificed, and serum samples were collected as described above. Serum samples were submitted to Idexx BioAnalytics for a toxicology panel. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), bile acids, total bilirubin (TBIL), blood urea nitrogen (BUN), creatine (CREA), gamma-glutamyl transferase (GGT) levels were analyzed. To note, data regarding bile acid levels in mice treated with PBS and with siLuc-ALC-0315 had N = 3 due to the presence of an outlier in each group (data not shown). The presence of the outliers would have not altered the conclusion, siLuc-ALC-0315 treated mice would have had an even higher bile acid mean and would have been more statistically significant from the PBS-treated mice. Outliers were determined via the ROUT method using GraphPad Prism although limitations such as our small sample size were considered. Bile acid levels commonly range from 0 to 6 μmol/L; however, our results were likely not biologically possible (>130 μmol/L). |
参考文献 |
|
其他信息 |
This leaves LNPs and other excipients as possible sources of allergens. The list of disclosed excipients in the Pfizer-BioNTech COVID-19 vaccine includes sucrose, sodium chloride, potassium chloride, disodium phosphate dihydrate, potassium dihydrogen phosphate, and water for injection. In the Moderna COVID-19 vaccine, the excipients are tromethamine, tromethamine hydrochloride, acetic acid, sodium acetate, and sucrose.11 Collectively these excipients are not classified as allergens. The LNPs in the Pfizer-BioNTech vaccine comprise four components: cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), ALC-0315 [(4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2- hexyldecanoate)], and ALC-0159 (2-[(polyethylene glycol)2000]-N,N-ditetradecylacetamide). The first two components have been widely used in regulatory approved liposomal medicines (e.g., Doxil) and are also features in the Moderna COVID-19 vaccine. ALC-0315 is an ionisable aminolipid that is responsible for mRNA compaction and aids mRNA cellular delivery and its cytoplasmic release through suspected endosomal destabilization. The ionisable lipid in the Moderna COVID-19 vaccine is not disclosed, but it is most likely heptadecan-9-yl8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate. The LNPs in the Pfizer-BioNTech COVID-19 vaccine contain low levels (<2 mol %) of ALC-0159, which contributes to nanoparticle stabilization by a steric mechanism through its poly(ethylene glycol) (PEG) moiety. In the Moderna COVID-19 vaccine, ALC-0159 is replaced with another PEGylated lipid (1,2-dimyristoyl-rac-glycero-3-methoxyPEG2000). There are speculations on a possible role for ALC-0159 (the PEGylated lipid) in triggering anaphylaxis, based on earlier reported anaphylactic reactions in some recipients of intravenously infused PEGylated nanomedicines.12 For example, with PEGylated nanomedicines such as Doxil, complement activation was initially thought to account for anaphylactoid reactions (the so-called complement activation-related pseudoallergy [CARPA] hypothesis); however, the validity of CARPA has been recently questioned and, instead, a direct role for macrophages and other immune cells have been proposed.13,14 Anaphylatoxins might play minor roles in potentiating anaphylactoid reactions; for instance, intradermal injection of low doses of anaphylatoxins (C3a, C4a, or C5a) in healthy volunteers was shown to induce immediate wheal-and-flare reactions.6 If LNP-based vaccines can trigger immediate local complement activation, then complement activation is expected to proceed in almost all vaccine recipients, but anaphylaxis with the Pfizer-BioNTech and Moderna vaccines is very rare, and complement activation alone cannot account for anaphylaxis episodes. With PEGylated nanomedicines such as pegnivacogin, anaphylactic reactions have been most notable in individuals with high titers of anti-PEG immunoglobulin G (IgG), but, again, not all individuals with high levels of such antibodies experienced allergic reactions.15 Thus, there are either inter-individual differences in susceptibility to antibody-triggered reactions or differences in the properties of anti-PEG antibodies. Nonetheless, the molecular basis of these reactions in humans remains unknown, but, in the murine model, antigen-induced anaphylaxis appears to proceed through the IgG, low-affinity FcγRIII, effector cells, and platelet-activating factor pathway.[1]
|
分子式 |
C48H95NO5
|
---|---|
分子量 |
766.29
|
精确质量 |
765.721
|
元素分析 |
C, 75.24; H, 12.50; N, 1.83; O, 10.44
|
CAS号 |
2036272-55-4
|
PubChem CID |
122666778
|
外观&性状 |
Colorless to light yellow oily liquid
|
密度 |
0.9±0.1 g/cm3
|
沸点 |
760.6±55.0 °C at 760 mmHg
|
闪点 |
413.8±31.5 °C
|
蒸汽压 |
0.0±5.8 mmHg at 25°C
|
折射率 |
1.472
|
LogP |
17.56
|
tPSA |
76.1Ų
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
46
|
重原子数目 |
54
|
分子复杂度/Complexity |
718
|
定义原子立体中心数目 |
0
|
SMILES |
O(CCCCCCN(CCCCO)CCCCCCOC(C(CCCCCC)CCCCCCCC)=O)C(C(CCCCCC)CCCCCCCC)=O
|
InChi Key |
QGWBEETXHOVFQS-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C48H95NO5/c1-5-9-13-17-19-27-37-45(35-25-15-11-7-3)47(51)53-43-33-23-21-29-39-49(41-31-32-42-50)40-30-22-24-34-44-54-48(52)46(36-26-16-12-8-4)38-28-20-18-14-10-6-2/h45-46,50H,5-44H2,1-4H3
|
化学名 |
[(4-Hydroxybutyl)azanediyl]di(hexane-6,1-diyl) bis(2-hexyldecanoate)
|
别名 |
ALC 0315; ALC-0315; ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate); Lipid ALC-0315; ALC-0315 (Excipient); ((4-Hydroxybutyl)azanediyl)bis(hexane-6,1-diyl) bis(2-hexyldecanoate); AVX8DX713V; 6-[6-(2-hexyldecanoyloxy)hexyl-(4-hydroxybutyl)amino]hexyl 2-hexyldecanoate; ALC0315
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
Ethanol : ~100 mg/mL (~130.50 mM)
DMSO : ~50 mg/mL (~65.25 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (3.26 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: 2.5 mg/mL (3.26 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (3.26 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.3050 mL | 6.5249 mL | 13.0499 mL | |
5 mM | 0.2610 mL | 1.3050 mL | 2.6100 mL | |
10 mM | 0.1305 mL | 0.6525 mL | 1.3050 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。