3α-AMINOCHOLESTANE (3AC)

别名: 3α-Aminocholestane; 3AC; 3-AC; 2206-20-4; 3alpha-Aminocholestane; 3; A-Aminocholestane; (3alpha,5alpha)-Cholestan-3-amine; (3R,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-amine; 3??-Aminocholestane; 3+/--Aminocholestane; 3 AC 3-Α-氨基胆甾烷(3AC); 5alpha-胆甾烷-3alpha-胺;3α-氨基胆甾烷
目录号: V3941 纯度: ≥98%
3α-Aminocholestane (也称为 3AC) 是一种有效的选择性 SH2 结构域的肌醇 5'-磷酸酶 1 (SHIP1) 抑制剂,具有免疫调节和抗肿瘤作用。
3α-AMINOCHOLESTANE (3AC) CAS号: 2206-20-4
产品类别: Phosphatase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
2mg
5mg
10mg
25mg
50mg
100mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
3α-氨基胆甾烷(也称为 3AC)是一种有效的、选择性的、含有 SH2 结构域的肌醇 5'-磷酸酶 1 (SHIP1) 抑制剂,具有免疫调节和抗肿瘤作用。它抑制 SHIP1,IC50 约为 2.5 μM。 3AC显示对SHIP2或PTEN没有抑制。许多肿瘤表现为磷脂酰肌醇 3-激酶 (PI3K)-PtdIns(3,4,5)P(3)-蛋白激酶 B (PKB/Akt) 信号通路激活增强。长期以来,人们一直认为含有肌醇-5'-磷酸酶 1 (SHIP1) 和 SHIP2 的脂质磷酸酶 SH2 结构域通过水解或 PtdIns(3,4,5) 抵消该途径诱导的生存信号,从而发挥肿瘤抑制剂的作用P(3) 到 PtdIns(3,4)P(2)。然而,越来越多的证据表明 PtdInd(3,4)P(2) 能够激活 Akt,并且对于激活 Akt 至关重要,因此表明 SHIP1/2 酶作为原癌基因的潜在作用。 3AC能够杀死恶性血液细胞。用 SHIP1 抑制剂 3AC 处理小鼠可阻断 MM 细胞的体内生长。
生物活性&实验参考方法
靶点
SHIP1/SH2 domain-containing inositol-5′-phosphatase 1 (IC50 = 2.5 μM)
体外研究 (In Vitro)
3α-氨基胆甾烷 (3AC) 疗法显着降低 OPM2 细胞活力。与 OPM2 细胞相比,RPMI8226 和 U266 细胞对 3α-氨基胆甾烷治疗的敏感性要低得多;然而,剂量≥12.5 μM 时活力显着降低。 3α-氨基胆甾烷处理36小时后,S期细胞比例明显下降,G2/M期细胞数量增加。另一方面,在增殖能力较低的 RPMI8226 和 U266 细胞中,用 3α-氨基胆甾烷治疗可阻断 G0 /G1 期的细胞周期进程,并导致进入 S 期的细胞百分比较低[2]。
体内研究 (In Vivo)
在 OPM2 攻击后,发现 3α-氨基胆甾烷 (3AC) 会导致体内多发性骨髓瘤 (MM) 生长减少(通过血浆中游离人 Igλ 轻链的量来测量)。此外,通过人 HLA-ABC 标记检测,与载体对照相比,用 3-氨基胆甾烷处理的小鼠的外周血显示出较少的循环 OPM2 细胞。最值得注意的是,用 3α-氨基胆甾烷治疗的小鼠在肿瘤攻击后的存活率大大提高。当用3α-氨基胆甾烷治疗的小鼠对治疗没有反应时,发现MM肿瘤有SHIP2的过度表达,这与体外处理OPM2细胞时相似,这意味着SHIP2表达较高的肿瘤细胞可能会被SHIP1选择抑制[2]。
酶活实验
磷酸酶酶活性检测[2]
荧光偏振法如前所述。简而言之,重组SHIP1或SHIP2在潜在化学抑制剂存在的情况下与其底物PtdIns(3,4,5)P3混合。将反应产物与ptdins (3,4)P2检测蛋白和荧光PI(3,4)P2探针混合。新合成的ptdins (3,4)P2取代了检测蛋白,从而增强了混合物中未结合的荧光探针,并降低了平均极化单位。因此,确定的SHIP抑制剂(2-苯基苯并[h]喹啉-4-基)-[2]哌啶基-甲醇盐酸盐(1PIE), 1-[(氯苯基)甲基]-2-甲基-5-(甲基硫)- 1h -吲哚-3-乙胺盐酸盐(2PIQ)和(2-adamantan-1-基-6,8-二氯喹啉-4-基)-吡啶-2-甲醇盐酸盐(6PTQ)随后通过孔雀石绿法或荧光偏振法检测重组SHIP1或SHIP2对游离磷酸盐产生的抑制作用。为了证明SHIP1和SHIP2对其他磷酸酶的选择性,我们从OPM2细胞中免疫沉淀SHIP1和肌醇5-磷酸酶ocl。为此,OPM2细胞在ip裂解缓冲液(20 mmol/L Tris、150 mmol/L NaCl、1 mmol/L EDTA、1 mmol/L EGTA、1% Triton × 100、1 mmol/L苯基甲基磺酰氟和Halt蛋白酶抑制剂)中裂解,并使用小鼠IgG抗体免疫沉淀SHIP1或OCRL。用免疫沉淀(IP)裂解缓冲液洗涤4次,用tris缓冲盐水(TBS)/MgCl2 (10 mmol/L)洗涤1次,用TBS/MgCl2重悬。将SHIP抑制剂(200 μmol/L)加入微球5 min,免疫沉淀的SHIP1在100 μmol/L PtdIns(3,4,5)P3 存在下孵育,免疫沉淀的OCRL在100 μmol/L PtdIns(4,5)P2存在下孵育30 min。按照厂家说明加入孔雀石绿溶液,20 min后读板。3α-氨基胆甾(3AC)的鉴定见前文。
细胞实验
细胞活力测定[2]
随着化合物浓度的增加,细胞被处理三次或更多次。根据制造商的说明,用细胞计数试剂盒测定细胞活力。用化合物处理细胞的OD除以对照细胞的OD,以未处理细胞的百分比表示细胞活力。结果用三个单独实验的平均值±标准误差表示。在PIP加回实验中,用10 μmol/L SHIP抑制剂处理MCF-7细胞2 h,洗净细胞,加入新鲜培养基。细胞在不含(0 μmol/L)或含有(10或20 μmol/L) PtdIns(3,4)P2-diC16 (P-3416)或PtdIns(3,5)P2-diC16 (P-3516)的条件下培养36 h,用Dojindo细胞计数试剂盒测定细胞活力。
细胞活力测定[1]
将10万个人ALL细胞以50 μl的培养基接种于96孔板的每孔中。将伊马替尼或其他抑制剂稀释后,在100 μl培养基中按指定浓度孵育。3 d后,用细胞计数试剂盒-8测定活细胞数。以载药处理细胞的基线值作为参考(设为100%)计算折叠变化。
流式细胞术[1]
流式细胞术中使用的抗体见补充表6。对于细胞周期分析,根据制造商的说明使用BrdU流式细胞术试剂盒或Click-iT EdU流式细胞术检测试剂盒。为了评估细胞内ROS水平,将ALL细胞与1 μM 5-(和6-)氯甲基-2 ',7 ' -二氯二氢荧光素(CM-H2DCFDA)在37℃下孵育7分钟,使染料被ROS氧化。用PBS洗涤后,将细胞在37°C的PBS中再孵育15分钟,使细胞内酯酶使氧化形式的CM-H2DCFDA完全去乙酰化。然后通过流式细胞术直接分析荧光水平,对活细胞进行门控。
Western blotting [1]
细胞缓冲液中添加蛋白酶抑制剂鸡尾酒和磷酸酶抑制剂鸡尾酒套装II,用于裂解细胞。每个样品10 μg的蛋白裂解物在微型预制凝胶上分离,并转移到硝化纤维素膜上。蛋白质检测采用一抗、碱性磷酸酶偶联二抗和化学发光底物。一抗的详细情况见补充表7。
小鼠细胞的集落形成试验[1]
本实验使用了10,000个bcr - abl1转化的ALL细胞或100,000个cml样细胞。将细胞重悬于小鼠MethoCult培养基中,并在直径3cm的培养皿上镀上一盘水以防止蒸发。7 ~ 14天后,计数菌落。
动物实验
OPM2 Tumor Challenge Studies [2]
NOD/SCID/γcIL2R (NSG) mice (The Jackson Laboratory, Bar Harbor, ME, USA) were injected intraperitoneally with 1 × 107 OPM2 cells and 6 h later received an initial injection of 3α-aminocholestane (3AC)  or vehicle. 3α-aminocholestane (3AC)  was suspended in a 0.3% Klucel/H2O solution at 11.46 mmol/L and administered by intraperitoneal injection of 100-μL solution. Vehicle-treated mice received 100-μL injection of 0.3% Klucel/H2O solution. The final concentration of 3α-aminocholestane (3AC)  in the treated mice was 60 μmol/L. The mice were then treated with 3α-aminocholestane (3AC)  or vehicle daily for the next 6 d and then twice per week in the remaining 15 wks of the survival study. In some instances, tumors from the vehicle- or 3α-aminocholestane (3AC)  -treated hosts were excised and single-cell suspensions were made for Western blot analysis of SHIP2 expression after mice were deemed to be moribund and recommended for humane euthanasia by veterinary staff.
Enzyme-Linked Immunosorbent Assay for Human Igλ Light Chain in Mouse Peripheral Blood [2]
Mice were bled into a serum collection tube 4 wks after the OPM2 challenge, and serum was obtained after pelleting of blood cells at 5,000g for 5 min. Human Igλ light chain amounts were determined using an Ig light chain detection kit from Biovendor per the manufacturer’s instructions.
Detection of Circulating OPM2 Cells in Mouse Blood [2]
Mice were bled into a blood collection tube 4 wks after OPM2 challenge and red cells were lysed. White blood cells were incubated with anti-CD16/32 to block Fc receptor binding and then stained with antibodies against human HLA-ABC, clone W6/32. Samples were acquired on an LSRII cytometer (Becton Dickinson), and dead cells were excluded from the analysis after cytometer acquisition by exclusion of cells that stained positively for DAPI (di aminido phenyl indol).
3α-Aminocholestane is suspended in a 0.3% Klucel/H2O solution at 11.46 mM and administered by intraperitoneal injection of 100 μL solution.
NOD/SCID/γcIL2R (NSG) mice
参考文献

[1]. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015 May 21;521(7552):357-61.

[2]. Therapeutic Potential of SH2 Domain-Containing Inositol-5′-Phosphatase 1 (SHIP1) and SHIP2 Inhibition in Cancer. Mol Med. 2012 Feb 10;18:65-75.

其他信息
B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation--above a maximum threshold--will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR-ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.
A small molecule inhibitor against INPP5D, 3-α-aminocholestane, 3AC (Extended Data Fig. 10f) selectively inhibited enzymatic activity of INPP5D (SHIP1; IC50 ~2.5 μmol/l) but not related phosphatases INPP5L1 (SHIP2) and PTEN (IC50 >20 μmol/l). Treatment of patient-derived Ph+ ALL cells with 3AC induced strong hyperactivation of SYK (Fig. 4a). In patient-derived myeloid CML samples, baseline levels of Syk activity were very low and not responsive to 3AC treatment (Extended Data Fig. 10g). Biochemical characterization of 3AC-mediated inhibition of INPP5D in patient-derived Ph+ ALL cells revealed potent and transient hyperactivation of proximal pre-BCR signaling molecules (Fig. 4a). Treatment of patient-derived TKI-resistant Ph+ ALL cells with 3AC induced cell death within four days. Importantly, pre-treatment of Ph+ ALL cells with the SYK-inhibitor (PRT06207) largely protected Ph+ ALL cells against 3AC-induced cell death (Fig. 4b), demonstrating that hyperactivation of Syk is required for induction of cell death. Dose-response analyses revealed that 3AC is selectively toxic for patient-derived Ph+ ALL cells (IC50=2.8 μmol/l; n=5) compared to mature B cell lymphoma (n=5; Extended Data Fig. 10h). We next studied drug-responses in a panel of six cases of Ph+ ALL from patients who relapsed under TKI-therapy, including three cases with global TKI-resistance owing to the BCR-ABL1T315I mutation. As expected, treatment with the TKI Imatinib had no effect in BCR-ABL1T315I cases (Extended Data Fig. 10i). In contrast, 3AC induced massive cell death (>95%) in all six cases of Ph+ ALL regardless of BCR-ABL1 mutation status (Extended Data Fig. 10i). Likewise, treatment of NOD/SCID transplant recipient mice carrying TKI-resistant patient-derived (BCR-ABL1T315I) Ph+ ALL cells with 3AC significantly prolonged overall survival (P=0.0002, log rank test; Fig. 4c) and reduced leukemia burden (Fig. 4d). While further studies are needed to optimize pharmacological targeting of this pathway, these experiments identify transient hyperactivation of SYK and engagement of negative B cell selection as a powerful new strategy to overcome drug-resistance in Ph+ ALL. [1]
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.
Aside from being a phosphatase, SHIP1 also functions to mask receptor tails to prevent recruitment of other signaling proteins, or as an adaptor protein for proteins such as Shc, DOK1 and Grb2, and as such has been proposed to reduce Ras signaling. Theoretically, it is possible that while blocking phosphatase activity with 3AC, these other functions of SHIP1 may not be affected. However, we observed a decrease in SHIP1 protein expression in MM cells upon prolonged treatment with 3AC, suggesting that these scaffolding functions may no longer play a role. It has recently been shown that SHIP-1 is ubiquitinated and targeted for proteasomal degradation upon its phosphorylation. However, we did not observe a difference in IGF-1–stimulated SHIP1 phosphorylation in MM cells after pretreatment with 3AC (unpublished observations, GM Fuhler). Hence, the reason for the proteasomal degradation of SHIP1 upon 3AC treatment remains unclear.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C27H49N
分子量
387.69
精确质量
387.386
元素分析
C, 83.65; H, 12.74; N, 3.61
CAS号
2206-20-4
相关CAS号
2206-20-4
PubChem CID
5351709
外观&性状
White to off-white solid powder
熔点
104.5-105.5℃ (methanol )
LogP
9.1
tPSA
26
氢键供体(HBD)数目
1
氢键受体(HBA)数目
1
可旋转键数目(RBC)
5
重原子数目
28
分子复杂度/Complexity
540
定义原子立体中心数目
9
SMILES
C[C@H](CCCC(C)C)[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2CC[C@@H]4[C@@]3(CC[C@H](C4)N)C)C
InChi Key
RJNGJYWAIUJHOJ-FBVYSKEZSA-N
InChi Code
InChI=1S/C27H49N/c1-18(2)7-6-8-19(3)23-11-12-24-22-10-9-20-17-21(28)13-15-26(20,4)25(22)14-16-27(23,24)5/h18-25H,6-17,28H2,1-5H3/t19-,20+,21-,22+,23-,24+,25+,26+,27-/m1/s1
化学名
(3R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-amine
别名
3α-Aminocholestane; 3AC; 3-AC; 2206-20-4; 3alpha-Aminocholestane; 3; A-Aminocholestane; (3alpha,5alpha)-Cholestan-3-amine; (3R,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-amine; 3??-Aminocholestane; 3+/--Aminocholestane; 3 AC
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:10 mM
Water:N/A
Ethanol:N/A
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 3.25 mg/mL (8.38 mM) (饱和度未知) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 32.5 mg/mL的澄清EtOH储备液加入到400 μL PEG300中并混合均匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 3.25 mg/mL (8.38 mM) (饱和度未知) in 10% EtOH + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 32.5 mg/mL 澄清 EtOH 储备液添加到 900 μL 玉米油中并充分混合。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.5794 mL 12.8969 mL 25.7938 mL
5 mM 0.5159 mL 2.5794 mL 5.1588 mL
10 mM 0.2579 mL 1.2897 mL 2.5794 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • 3Α-AMINOCHOLESTANE (3AC)

    Small molecule inhibition of Inpp5d induces hyperactivation of Syk and triggers a deletional checkpoint in pre-B ALL cells.2015May 21;521(7552):357-61.

  • 3Α-AMINOCHOLESTANE (3AC)

    SHIP1 inhibition reduces viable cell numbers and either G2/M or G0/G1 cell cycle arrest.2012 Feb 10;18:65-75.

  • 3Α-AMINOCHOLESTANE (3AC)

    SHIP1 inhibition affects apoptosis induction differently in MM cell lines.2012 Feb 10;18:65-75.

联系我们