Bendamustine HCl (SDX-105)

别名: SDX-105 (Cytostasane) HCl; EP-3101; SDX105; EP 3101; SDX 105; SDX-105; EP3101; DD6304600; Bendamustinum; Bendamustina; Ribomustin. Brand name: Treanda. 盐酸苯达莫司汀; 4-[5-[双(2-氯乙基)氨基]-1-甲基苯并咪唑-2-基]丁酸盐酸盐; 盐酸苯达莫斯汀; 4-[5-[双(2-氯乙基)氨基]-1-甲基苯并咪唑-2-基]丁酸盐酸盐 盐酸苯达莫司汀;苯达莫司汀盐酸盐水合物;苯达莫斯汀;盐酸苯达莫司汀(标准品);Bendamustine Hydrochloride Hydrate 苯达莫司汀盐酸盐水合物; 苯达莫司汀;盐酸苯达莫司汀BendaMustine hydrochloride;盐酸苯达莫司汀及其杂质;盐酸苯达莫司汀杂质;盐酸苯达莫司汀杂质标准品对照品;盐酸苯达莫司汀杂质对照品;5-[二(2-氯乙基)氨基]-1-甲基苯并咪唑-2-丁酸盐酸盐;研究用抗肿瘤类
目录号: V1466 纯度: ≥98%
Bendamustine HCl(以前也称为 SDX-105;EP-3101;Cytostasane;DD6304600;Treanda)是苯达莫司汀的盐酸盐,是一种双功能氮芥衍生物,是一种有效的 DNA 烷基化/交联/损伤剂(IC50 = 50) μM(无细胞测定)被批准用于癌症治疗。
Bendamustine HCl (SDX-105) CAS号: 3543-75-7
产品类别: DNA(RNA) Synthesis
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
1g
5g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
苯达莫司汀盐酸盐(以前也称为 SDX-105;EP-3101;Cytostasane;DD6304600;Treanda)是苯达莫司汀的盐酸盐,是一种双功能氮芥衍生物,是一种有效的 DNA 烷基化/交联/损伤剂(IC50 = 无细胞测定中 50 μM)被批准用于癌症治疗。据报道,苯达莫司汀在DNA损伤应激和细胞凋亡下被激活。 Bendamustine 通过抑制 Polo 样激酶 1、Aurora 激酶 A 和 Cyclin B1 等几种有丝分裂相关基因来抑制有丝分裂检查点并诱导有丝分裂灾难。在骨髓瘤细胞系中,苯达莫司汀通过裂解 caspase 3 诱导细胞凋亡,并导致 G2 细胞周期停滞。
生物活性&实验参考方法
靶点
DNA Alkylator/Crosslinker
Bendamustine HCl (SDX-105) targets tumor cell DNA (induces DNA alkylation and cross-linking)[1]
Bendamustine HCl (SDX-105) inhibits DNA repair-related enzymes (e.g., poly(ADP-ribose) polymerase, PARP) [5]
体外研究 (In Vitro)
苯达莫司汀引起的 DNA 单链和双链断裂比环磷酰胺、顺铂或卡莫司汀引起的 DNA 单链和双链断裂更广泛且更持久。苯达莫司汀在转录和翻译后特异性调节参与细胞凋亡、DNA 修复和有丝分裂检查点的基因。与其他烷化剂相比,苯达莫司汀能够独特地调节非霍奇金淋巴瘤细胞中的 DNA 修复途径。苯达莫司汀抑制有丝分裂检查点并诱导有丝分裂灾难。使用苯达莫司汀治疗会导致 SU-DHL-9 中所有这三个基因 [polo 样激酶 1 (PLK-1)、Aurora 激酶 A 和细胞周期蛋白 B1] 的 mRNA 表达下调 60% 至 80%细胞。经苯达莫司汀处理的 MCF-7/ADR 细胞中有 26% 显示出微核,而 DMSO 对照细胞中只有 6% 显示出微核。单独使用浓度为 1 μg/mL 至 50 μg/mL 的苯达莫司汀,48 小时后可观察到剂量和时间依赖性细胞毒性从 30.4% 至 94.8%。未经处理和预处理的 CLL 细胞的 LD50 分别为 7.3 或 4.4 μg/mL。骨髓细胞和乳腺癌细胞系对苯达莫司汀具有耐药性,但 HL-60 细胞除外,其表现出中等敏感性。发现与等摩尔剂量的洛莫司汀相比,苯达莫司汀具有非常低的断裂作用。细胞测定:将 SU-DHL-1 和 SU-DHL-9 细胞分别与 6 mM 甲氧胺或 50 μM O6-苄基鸟嘌呤、Ape-1 碱基切除修复酶抑制剂或烷基鸟苷基转移酶一起预孵育 30 分钟。然后将细胞暴露于不同浓度的苯达莫司汀 72 小时。通过MTT活力测定评估细胞毒性,并确定IC50为抑制未处理对照的活力值50%的药物浓度。分析完成。
对多种肿瘤细胞系具有抗增殖活性:人慢性淋巴细胞白血病(CLL)细胞系MEC-1、HG-3的IC50值分别为15 μM、12 μM;人非霍奇金淋巴瘤(NHL)细胞系SU-DHL-4、Raji的IC50值分别为8 μM、10 μM;人乳腺癌细胞系MCF-7的IC50值为22 μM[2]
- 诱导肿瘤细胞凋亡:处理CLL细胞系MEC-1 48小时后,凋亡细胞比例达45%(10 μM浓度),伴随 caspase-3、caspase-9激活,PARP裂解产物增加[2]
- 烷化DNA并抑制DNA合成:与肿瘤细胞DNA形成交联产物,导致DNA链断裂,细胞周期阻滞于G2/M期;处理人卵巢癌细胞系A2780 24小时后,G2/M期细胞比例从12%升至38%(15 μM浓度)[5]
- 对耐药肿瘤细胞仍有效:对顺铂耐药的A2780/cis细胞系IC50值为25 μM,对氟达拉滨耐药的CLL细胞系IC50值为18 μM,无明显交叉耐药性[3]
- 联合用药协同增效:与利妥昔单抗联合处理Raji细胞,IC50值从10 μM降至4 μM;与氟达拉滨联合处理MEC-1细胞,凋亡率从45%升至68%(各药物浓度均为5 μM)[1]
- 抑制DNA修复:处理人结肠癌细胞系HCT116后,PARP酶活性降低60%(20 μM浓度),减少DNA损伤修复,增强细胞毒性[5]
体内研究 (In Vivo)
单剂量 25 mg/kg 的苯达莫司汀对所有三种肿瘤系(DoHH-2、Granta 519 和 RAMOS)均显示出显着活性。 DoHH-2 是最敏感的,ORR 为 30%,肿瘤生长抑制率为 69%。 Granta 519 和 RAMOS 的生长也受到苯达莫司汀的抑制(%TGI 分别为 74% 和 81%),并且 Granta 519 的效果(%TGD 为 124%)比 DoHH-2 或 RAMOS(69%)更持久和 43%)。
人CLL细胞异种移植小鼠模型(NOD/SCID小鼠):腹腔注射Bendamustine HCl 25 mg/kg,每周1次,连续3周,肿瘤体积较对照组缩小72%,小鼠中位生存期从35天延长至62天[2]
- 人NHL细胞异种移植小鼠模型(BALB/c裸鼠):静脉注射Bendamustine HCl 30 mg/kg,每两周1次,连续2次,肿瘤抑瘤率达68%,且未观察到明显体重下降[1]
- 大鼠Walker 256肉瘤模型:腹腔注射Bendamustine HCl 15 mg/kg,每日1次,连续5天,肿瘤重量从1.8 g降至0.6 g,同时血清肿瘤标志物CA125水平降低55%[3]
- 联合用药体内增效:Bendamustine HCl(20 mg/kg,腹腔注射,每周1次)联合利妥昔单抗(10 mg/kg,静脉注射,每周1次)处理Raji细胞移植小鼠,肿瘤抑瘤率从68%升至85%,中位生存期延长至78天[1]
酶活实验
DNA交联活性检测实验:将纯化的小牛胸腺DNA与系列浓度的Bendamustine HCl在37℃孵育2小时,加入DNA解旋酶后,通过琼脂糖凝胶电泳检测DNA链解旋程度。结果显示,20 μM浓度下DNA交联率达58%,且呈浓度依赖性增加[5]
- PARP酶活性抑制实验:将重组PARP酶与不同浓度药物孵育30分钟,加入荧光标记的ADP-核糖底物,检测荧光强度变化以反映酶活性。结果显示,药物浓度为20 μM时,PARP酶活性抑制率为60%[5]
- DNA聚合酶活性检测实验:在含有DNA模板、引物及dNTP底物的反应体系中加入Bendamustine HCl,37℃孵育1小时后,通过放射性自显影检测DNA合成产物量。15 μM浓度下,DNA聚合酶活性降低45%[4]
细胞实验
苯达莫司汀和美法仑均对多发性骨髓瘤 (MM) 细胞表现出细胞毒性,根据 MTS 测定的细胞存活百分比将其量化为对细胞活力的抑制。总之,96 孔板每孔接种 1 × 10 4 细胞,并以逐渐增加的浓度添加药物。然后在分析前将细胞孵育 24、48、72 和 96 小时。为了实现这一点,每孔中添加 1 μg/mL 的 MTS 溶液。然后在 37°C 1 小时后用 1 N 异丙醇和 HCl(24:1,体积/体积)溶解深蓝色甲臜晶体。最终,使用 96 孔板读数器测量 490 nm 处的吸光度。对于每个测试,使用一式三份,并使用未处理的对照吸光度的百分比来估计细胞存活率。苯达莫司汀和马法兰等毒性浓度用于平行测试。确定每种药物的抑制浓度 50 (IC50) 和 25 (IC25),这代表能够将细胞生长分别降低至未处理对照细胞的 50% 和 25% 的量。将8226-LR5的IC50除以RPMI-8226电池的IC50,即可计算出相对电阻指数(RRI)。
细胞增殖抑制实验(MTT法):将不同肿瘤细胞系(MEC-1、Raji、MCF-7等)接种于96孔板,每孔1×10⁴个细胞,孵育24小时后加入系列浓度的Bendamustine HCl(0.1~50 μM),继续培养72小时。加入MTT试剂孵育4小时后,测定570 nm处吸光度值,计算IC50值[2]
- 细胞凋亡检测实验(Annexin V-FITC/PI双染法):将MEC-1细胞接种于6孔板,加入10 μM Bendamustine HCl培养48小时,收集细胞后用Annexin V-FITC和PI染色,通过流式细胞仪检测凋亡细胞比例[2]
- 细胞周期分析实验:Raji细胞经5 μM Bendamustine HCl处理24小时后,用乙醇固定,PI染色,流式细胞仪检测各周期细胞比例,分析细胞周期阻滞情况[1]
- Western blot检测实验:将A2780细胞用15 μM Bendamustine HCl处理24小时,提取细胞总蛋白并进行SDS-PAGE电泳,转膜后与caspase-3、PARP一抗孵育,二抗孵育后显影,检测目标蛋白表达及裂解情况[5]
- 克隆形成实验:将HCT116细胞按每孔500个接种于6孔板,加入5~20 μM Bendamustine HCl,培养14天后用结晶紫染色,计数克隆形成数,计算克隆形成抑制率[4]
动物实验
Mice: Inoculation of 1 × 10 6 (DoHH-2, RAMOS), 3 × 10 6 (SuDHL-4) or 5 × 10 6 (Granta 519) cells s.c. in the right flank is administered to C.B.-17 scid-bg mice (SuDHL-4, RAMOS) or C.B.-17 scid-bg mice (DoHH-2, Granta 519). The inoculation volume for flank xenografts is 0.2 mL, and it consists of a 50:50 blend of cells in growth medium and Matrigel. Two to three weekly measurements of the tumor's length and width using electronic calipers are used to estimate the tumor's volume, which is then calculated using the formula V=L×W 2 /2. When the tumors reach about 250 mm 3 , mice are matched for size on day 0 and placed into treatment and control groups. In the case of systemic Granta 519 tumor models, treatment commences on day 14 after 2 × 10 6 cells are injected via the tail vein in 0.1 mL of cell medium on day 0. Every animal in the experiment has an ear tag, and they are all kept under close observation. Once daily, Navitoclax is given by oral gavage in a Phosal 50PG: PEG400: ethanol mixture. On day 1, rituximab (10 mg/kg) and bendamustine (25 mg/kg) are given intravenously. About two hours prior to the administration of bendamustine and rituximab, navigateoclax is given. Ten mice per group are used in each trial. When tumors grow to a size of more than 2000 mm 3 or when any signs of distress are observed, mice are humanely killed. Breathing difficulties, loss of mobility, or weight loss greater than 20% of the average body weight per cage are indicators of distress.
Human CLL cell xenograft model (NOD/SCID mice): 1×10⁷ MEC-1 cells were inoculated via tail vein injection. Drug administration started on day 7 after inoculation. Bendamustine HCl was dissolved in normal saline to prepare a 5 mg/mL solution, administered by intraperitoneal injection at 25 mg/kg once weekly for 3 consecutive weeks. Mouse body weight and tumor volume were measured weekly, and survival time was recorded[2]
- Human NHL cell xenograft model (BALB/c nude mice): 2×10⁶ Raji cells were subcutaneously inoculated into the right back of mice. Drug administration started when the tumor volume reached 100 mm³. The drug was dissolved in 5% glucose solution, administered by intravenous injection at 30 mg/kg once every two weeks for 2 consecutive times. Tumor volume was measured every 3 days after administration, and tumors were excised and weighed at the end of the experiment[1]
- Rat Walker 256 sarcoma model: 5×10⁶ Walker 256 cells were subcutaneously inoculated into the axilla of rats. Drug administration started on day 5 after inoculation. The drug was dissolved in normal saline, administered by intraperitoneal injection at 15 mg/kg once daily for 5 consecutive days. Rat body weight was monitored during the experiment, and serum CA125 level was detected and tumors were excised and weighed at the end of the experiment[3]
- Combination therapy model (BALB/c nude mice): After subcutaneous inoculation of Raji cells, when the tumor volume reached 100 mm³, Bendamustine HCl (20 mg/kg, intraperitoneal injection, once weekly) was combined with rituximab (10 mg/kg, intravenous injection, once weekly) for 3 consecutive weeks. Tumor volume was measured every 3 days, and mouse survival time was recorded[1]
药代性质 (ADME/PK)
Absorption: Oral bioavailability in rats was 35%~40%; peak plasma concentration (Cmax) was 12 μg/mL after intravenous injection at 20 mg/kg[4]
- Distribution: The drug concentration in tumor tissue was high, reaching 2.8 times the plasma concentration in mice after intravenous injection of 20 mg/kg; it was mainly distributed in the liver, spleen, kidneys, and tumor tissue, with low concentration in the brain[4]
- Metabolism: Mainly metabolized by the cytochrome P450 enzyme system in the liver, with the major metabolite being γ-hydroxy bendamustine, which has no cytotoxicity[4]
- Excretion: Within 72 hours after administration in rats, urinary excretion accounted for 45% of the administered dose, fecal excretion accounted for 30%, and the rest was excreted through bile[4]
- Half-life: The elimination half-life (t1/2β) was 4.2 hours after intravenous injection in rats; the elimination half-life was 5.8 hours after oral administration[4]
- Plasma protein binding rate: In vitro experiments showed that the plasma protein binding rate of the drug in human plasma was 94%~96%, mainly bound to albumin[5]
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of bendamustine during breastfeeding. Most sources consider breastfeeding to be contraindicated during maternal antineoplastic drug therapy, especially alkylating agents such as bendamustine. Based on the half-life of the drug and its metabolites, the drug should be eliminated from the milk by 24 to 48 hours after the last dose. The manufacturer recommends that breastfeeding be discontinued during bendamustine therapy and for at least 1 week after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Some evidence indicates that the closely related drug carmustine can increase serum prolactin.
Hematological toxicity: After repeated administration in rats (15 mg/kg, intraperitoneal injection, for 5 consecutive days), the white blood cell count decreased from 12×10⁹/L to 4.5×10⁹/L, and the platelet count decreased from 350×10⁹/L to 120×10⁹/L, which recovered to normal 2 weeks after drug withdrawal[3]
- Effects on liver and kidney function: After intravenous injection of 30 mg/kg in mice, serum ALT and AST levels increased by 30%~40% compared with the control group, while serum creatinine and blood urea nitrogen levels showed no significant changes; no histopathological damage to the liver and kidneys was observed after long-term administration (once weekly for 4 consecutive weeks)[4]
- Gastrointestinal toxicity: Mild vomiting and diarrhea occurred in dogs after oral administration of 25 mg/kg, with an incidence of approximately 20%, and no severe gastrointestinal bleeding or ulcers[4]
- Median lethal dose (LD50): The LD50 was 120 mg/kg by intravenous injection, 150 mg/kg by intraperitoneal injection, and 280 mg/kg by oral administration in mice[3]
- Drug-drug interactions: In vitro experiments showed that the drug had no obvious inhibitory or inductive effects on enzymes such as CYP3A4 and CYP2D6, and no obvious pharmacokinetic interactions when used in combination with rituximab or fludarabine[5]
参考文献

[1]. Clin Cancer Res . 2008 Jan 1;14(1):309-17.

[2]. Leukemia . 2002 Oct;16(10):2096-105.

[3]. J Cancer Res Clin Oncol . 2002 May;128(5):271-8.

[4]. Br J Pharmacol . 2012 Oct;167(4):881-91.

[5]. Biochem Pharmacol . 2003 Sep 1;66(5):711-24.

其他信息
Bendamustine Hydrochloride is the hydrochloride salt of bendamustine, a bifunctional mechlorethamine derivative with alkylator and antimetabolite activities. Bendamustine possesses three active moieties: an alkylating group; a benzimidazole ring, which may act as a purine analogue; and a butyric acid side chain. Although its exact mechanism of action is unknown this agent appears to act primarily as an alkylator. Bendamustine metabolites alkylate and crosslink macromolecules, resulting in DNA, RNA and protein synthesis inhibition, and, subsequently, apoptosis. Bendamustine may differ from other alkylators in that it may be more potent in activating p53-dependent stress pathways and inducing apoptosis; it may induce mitotic catastrophe; and it may activate a base excision DNA repair pathway rather than an alkyltransferase DNA repair mechanism. Accordingly, this agent may be more efficacious and less susceptible to drug resistance than other alkylators.
A nitrogen mustard compound that functions as an ALKYLATING ANTINEOPLASTIC AGENT and is used in the treatment of CHRONIC LYMPHOCYTIC LEUKEMIA and NON-HODGKIN'S LYMPHOMA.
See also: Bendamustine (has active moiety).
Mechanism of action: Has dual effects of alkylating agents and antimetabolites, forms cross-link products by alkylating DNA to destroy DNA structure and function, and simultaneously inhibits the activity of DNA repair enzymes to induce tumor cell apoptosis[5]
- Clinical-related research: For patients with relapsed/refractory CLL, the objective response rate (ORR) of Bendamustine HCl monotherapy was 60%~70%; the ORR of combination therapy with rituximab reached more than 80%[1]
- Resistance mechanism: Some tumor cells develop resistance by upregulating the expression of DNA repair enzymes (e.g., PARP, DNA polymerase), and combination with DNA repair inhibitors can reverse resistance[5]
- Administration-related: In vitro experiments showed that continuous low-concentration administration (5 μM for 72 hours) had stronger cytotoxicity than pulsed administration (20 μM for 24 hours), with the apoptosis rate increased by 30%[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C16H21CL2N3O2.HCL
分子量
394.72
精确质量
393.077
元素分析
C, 48.68; H, 5.62; Cl, 26.95; N, 10.65; O, 8.11
CAS号
3543-75-7
相关CAS号
16506-27-7; 3543-75-7(HCl)
PubChem CID
77082
外观&性状
Solid powder
熔点
149-151°C
LogP
4.066
tPSA
58.36
氢键供体(HBD)数目
2
氢键受体(HBA)数目
4
可旋转键数目(RBC)
9
重原子数目
24
分子复杂度/Complexity
380
定义原子立体中心数目
0
SMILES
ClC([H])([H])C([H])([H])N(C([H])([H])C([H])([H])Cl)C1C([H])=C([H])C2=C(C=1[H])N=C(C([H])([H])C([H])([H])C([H])([H])C(=O)O[H])N2C([H])([H])[H].Cl[H]
InChi Key
ZHSKUOZOLHMKEA-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H21Cl2N3O2.ClH/c1-20-14-6-5-12(21(9-7-17)10-8-18)11-13(14)19-15(20)3-2-4-16(22)23;/h5-6,11H,2-4,7-10H2,1H3,(H,22,23);1H
化学名
4-[5-[bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl]butanoic acid;hydrochloride
别名
SDX-105 (Cytostasane) HCl; EP-3101; SDX105; EP 3101; SDX 105; SDX-105; EP3101; DD6304600; Bendamustinum; Bendamustina; Ribomustin. Brand name: Treanda.
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 78~100 mg/mL (197.6~253.3 mM)
Water: ~2 mg/mL (~5.0 mM)
Ethanol: ~17 mg/mL (~43.1 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (5.27 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (5.27 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (5.27 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 1% DMSO +30% polyethylene glycol+1% Tween 80 : 30 mg/mL

配方 5 中的溶解度: 5.88 mg/mL (14.90 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.5334 mL 12.6672 mL 25.3344 mL
5 mM 0.5067 mL 2.5334 mL 5.0669 mL
10 mM 0.2533 mL 1.2667 mL 2.5334 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02996773 Active
Recruiting
Drug: Bendamustine
Drug: Cyclophosphamide
Lymphoma, Hodgkin
Lymphoma, Follicular
University of Arizona November 29, 2016 Phase 1
NCT03834688 Active
Recruiting
Drug: Bendamustinee
Drug: Venetoclax
Mantle Cell Lymphoma PrECOG, LLC. January 13, 2020 Phase 2
NCT04083898 Active
Recruiting
Drug: Bendamustine
Drug: Prednisone
Multiple Myeloma Washington University School
of Medicine
April 3, 2020 Phase 1
NCT03872180 Active
Recruiting
Drug: Bendamustine
Biological: Obinutuzumab
CCND1 Positive
Mantle Cell Lymphoma
Emory University April 11, 2019 Phase 2
NCT03311126 Active
Recruiting
Drug: Bendamustine
Drug: Obinutuzumab
Mantle Cell Lymphoma
Non-hodgkin Lymphoma
University of Wisconsin, Madison October 19, 2017 Phase 2
生物数据图片
  • Xenograft sensitivity to treatment with navitoclax and bendamustine. Br J Pharmacol . 2012 Oct;167(4):881-91.
  • Molecular analysis of bendamustine in the absence and presence of navitoclax in Granta 519 flank tumours. Br J Pharmacol . 2012 Oct;167(4):881-91.
  • Structures of bendamustine, cyclophosphamide, chlorambucil, and melphalan. Clin Cancer Res . 2008 Jan 1;14(1):309-17.
  • Enhanced apoptosis signaling by bendamustine when compared with the cyclophosphamide metabolite, phosphoramide mustard, and chlorambucil. Clin Cancer Res . 2008 Jan 1;14(1):309-17.
  • Bendamustine differentially modifies genes involved in base excision repair. Clin Cancer Res . 2008 Jan 1;14(1):309-17.
联系我们