规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
1g |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
2-萘酚是萘的代谢产物,由 CYP 同工酶(CYP 1A1、CYP 1A2、CYP 2A1、CYP 2E1 和 CYP 2F2)代谢。 2-Naphthol(10、25、50 和 100 μM)可降低外周血单核细胞的生长,但不会引起细胞毒性作用 [1]。
|
---|---|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
Between 5 and 10% of a cutaneous dose /of 2-naphthol/ has been recovered from the urine ... . Metabolism / Metabolites Several pathways of drug metabolizing enzyme activity were measured in hepatic fractions of cattle, sheep, goats, chickens, turkeys, ducks, rabbits and rats. The pathways examined included the O-demethylation of p-nitrophenol, microsomal ester hydrolysis of procaine and glucuronidation of p-nitrophenol, and the cytosolic acetylation of sulfamethazine and sulfation of 2-naphthol. For most enzymatic pathways measured, goats were more similar to sheep (wether) than to cattle (steers). The exception was UDP-glucuronyltransferase activity, which was significantly higher for the goat than for any other species studied. Within the avian subset, the chicken and turkey were usually the most similar species. The activities of arylsulfotransferase isozymes III and IV were particularly low for the duck compared to the chicken and turkey. N-acetyltransferase activity was very high for rabbits and very low for sheep and goats. Several pathways of drug metabolizing enzymic activity were measured in hepatic fractions of the channel catfish and rat using model substrates. The pathways examined included the O-demethylation of p-nitroanisole, microsomal ester hydrolysis of procaine and glucuronidation of p-nitrophenol and the cytosolic acetylation of sulfamethazine and sulfation of 2-naphthol. Catfish liver preparations were incubated at both 25 °C and 37 °C. The oxidative metabolism of p-nitrophenol was only 1/8 of that of the rat at 37 °C and 1/12 that of the rat at 25 °C. Procaine ester hydrolysis was negligible in catfish microsomal preparations. At 37 °C, p-nitrophenol glucuronidation was equivalent in catfish and rat microsomes. Catfish cytosolic preparations exhibited N-acetyltransferase and arylsulfotransferase nearly comparable to those of the rat. Rates of glucuronidation and sulfation were higher at 37 °C than at 25 °C in hepatic fractions of the catfish. To characterize the substrate specificities of various isozymes of carboxylesterases, a series of carbonates, thiocarbonates, carbamates, and carboxylic acid esters containing alpha- or beta-naphthol or p-nitrophenol as leaving groups were tested as substrates of human, rat and mouse liver microsomal esterases; hydrolases A and B from rat liver microsomes were also tested. The carbonates, thiocarbonates, and carboxylic esters of alpha-naphthol were cleaved more rapidly than the corresponding beta-naphthol isomers by the mammalian liver esterases. The majority of the substrates was consistently hydrolyzed at higher rates by hydrolase B compared with hydrolase A. Compared with the corresponding carboxylates, the carbonate moiety of alpha- and beta-naphthol and p-nitrophenol lowered the specific activities of the enzymes by about 5 fold but improved stability under basic conditions. Human and mouse liver microsomal esterase activities were 5 orders of magnitude lower than the esterase activities of hydrolase B. The functional group and lipophilicity of the substrate structure influenced the activity of mammalian esterases. The inhibition of hydroxysteroid-sulfotransferase (ST) activity in the rat liver by alkylamines was investigated. Liver homogenates were prepared from Wistar rats, and cytosolic fractions were obtained. ST activities towards dehydroepiandrosterone (DHEA), androsterone (AS), and 2-naphthol (2NA) were assayed. Cytosolic fractions were fractionated by column chromatography. Triethylamine, which was used as an elution solvent for column chromatography to purify chemically synthesized 3-phosphoadenosine-5-phosphosulfate (PAPS) inhibited androgen sulfation with AS and DHEA, but did not affect ST activities with cortisol and 2-NA. The sulfate donor ability of various PAPS preparations were compared. Fourteen primary, secondary, and tertiary amines were examined for inhibitory actions on ST activities towards DHEA, cortisol, and 2-NA. A secondary amine, di-n-butylamine, and three tertiary amines, triethylamine, tri-n-propylamine and tri-n-butylamine, inhibited DHEA ST activity by 40 to 60%, irrespective of sex. However, 2-NA and cortisol ST activities were not affected to any significant extent. Lineweaver Burk plots with partially purified hydroxysteroid ST indicated that the inhibition by triethylamine fitted a noncompetitive inhibition. The /results/ conclude that glucocorticoid ST appears to be distinct from the hydroxysteroid ST, and that this has implications for the inhibition of human liver ST activities by synthetic steroids and tertiary amines given as drugs. For more Metabolism/Metabolites (Complete) data for 2-NAPHTHOL (8 total), please visit the HSDB record page. 2-Naphthol is a known human metabolite of naphthalene. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: 2- Naphthol is a white, bulky leaflets or white powder with faint phenol-like odor. The principal uses for 2-naphthol are in the dyes and pigments industries, eg, as a coupling component for azo dyes, and to make important intermediates, such as 3-hydroxy-2-naphthalenecarboxylic acid (BON) and its anilide (naphthol AS), 2-naphtholsulfonic acids, aminonaphtholsulfonic acids, and 1-nitroso-2-naphthol. The major pharmaceutical products based on 2-naphthol are the antifungal tolnaftate, produced by reaction with thiophosgene and N-methyl-m-toluidine; the semisynthetic penicillin nafcillin, produced via 2-ethoxynaphthalene; and the anti-inflammatory naproxen, produced via 2-methoxynaphthalene. It is also was used as a counterirritant in alopecia, also as an anthelmintic, and as an antiseptic in treatment of scabies. HUMAN EXPOSURE AND TOXICITY: The extensive application of 2-naphthol ointments has been responsible for systemic side effects, including vomiting and death. Ingestion can produce renal damage, vomiting, diarrhea, abdominal pain, syncope, convulsions, and hemolytic anemia. Twenty patients who were treated for scabies by rubbing 50 g of a salve containing 7.5% 2-naphthol over the whole body morning and evening for 2 days were reported to have developed hyperemia of the fundus and many had very small white and pigmented spots in the retina. Vitreous opacities were noticed in two cases. Only in one case was abnormality of the lens observed, and this was only a dot in the posterior cortex. Visual acuity was reported to be impaired in two cases, but neither of these had normal eyes before the treatment. ANIMAL STUDIES: Experimentally in rabbits the most consistent ocular change induced by admin 2-naphthol either by stomach or by application to the skin was a development in the retina of small white shiny flecks which soon became pigmented. These became more numerous and increased in size as daily admin of the chemical continued. The retinal vessels and the iris commonly became hyperemic. The aqueous was sometimes slightly turbid, and the vitreous commonly became turbid early, but then cleared despite continuing admin of naphthol. The cornea and conjunctiva were never involved. The other study reported that in the retinas of poisoned adult rabbits spotty degeneration of the rods and cones and irregular variation in the amt of pigment in the pigment epithelium were observed. Vacuoles were present in the nuclear and nerve fiber layer and the ciliary epithelium. When 2-naphthol was administered to pregnant rabbits, the offspring had congenital cataracts, degeneration of the neuroepithelium, and hypertrophy of the retinal pigment cells. An in vivo study was conducted of the biochemical pathways modulating the cataractogenicity of naphthalene. Male mice were treated with naphthalene or its metabolites and with various chemical probes that modulate critical biochemical pathways relevant to naphthalene bioactivation and detoxification. No cataractogenic or lethal effects from 2-naphthol were noted at dose levels of 56 or 100 mg/kg; however doses of 177 and 562 mg/kg killed all the animals within 1.5 hr. ECOTOXICITY STUDIES: As test systems, fish embryos and larvae were the most sensitive, juvenile fathead minnows and arthropods had intermediate sensitivity and algae and snails were the most resistant to the test compounds. Toxicity Data LC50 (rat) = 2,200 mg/m3/4h Non-Human Toxicity Values LD50 Mouse ip 97,500 mg/kg LD50 Rat oral 1960 mg/kg |
参考文献 | |
其他信息 |
2-naphthol is a naphthol carrying a hydroxy group at position 2. It has a role as an antinematodal drug, a genotoxin, a human xenobiotic metabolite, a mouse metabolite, a human urinary metabolite and a radical scavenger.
2-Naphthol is a colorless crystalline solid and an isomer of 1-naphthol, differing by the location of the hydroxyl group on naphthalene. The naphthols are naphthalene homologues of phenol, with the hydroxyl group being more reactive than in the phenols. 2-Naphthol has several different uses including dyes, pigments, fats, oils, insecticides, pharmaceuticals, perfumes, antiseptics, synthesis of fungicides, and antioxidants for rubber. Detection of 2-Naphthol in urine usually results from long-term persistent exposure to pesticides such as chlorpyrifos, but also due to exposure to naphthalene in older types of mothballs, fires that produce polyaromatic hydrocarbons (PAHs), and tobacco smoke. Therapeutic Uses 2-Naphthol ... has had medical uses as a counterirritant in alopecia, also as an anthelmintic, and as an antiseptic in treatment of scabies. Drug Warnings 2-Naphthol-containing pastes should be applied only for short periods of time and to a limited area not exceeding 150 square cm. |
精确质量 |
144.057
|
---|---|
CAS号 |
135-19-3
|
相关CAS号 |
2-Naphthol-d8;78832-61-8;2-Naphthol-d7;78832-54-9
|
PubChem CID |
8663
|
外观&性状 |
Off-white to light brown solid powder
|
密度 |
1.2±0.1 g/cm3
|
沸点 |
285.5±0.0 °C at 760 mmHg
|
熔点 |
120-122 °C(lit.)
|
闪点 |
144.0±10.6 °C
|
蒸汽压 |
0.0±0.6 mmHg at 25°C
|
折射率 |
1.678
|
LogP |
2.71
|
tPSA |
20.23
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
1
|
可旋转键数目(RBC) |
0
|
重原子数目 |
11
|
分子复杂度/Complexity |
133
|
定义原子立体中心数目 |
0
|
SMILES |
O([H])C1C([H])=C([H])C2=C([H])C([H])=C([H])C([H])=C2C=1[H]
|
InChi Key |
JWAZRIHNYRIHIV-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C10H8O/c11-10-6-5-8-3-1-2-4-9(8)7-10/h1-7,11H
|
化学名 |
naphthalen-2-ol
|
别名 |
NSC 2044 NSC-2044Betanaphthol NSC2044
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ≥ 100 mg/mL (~693.63 mM)
H2O : ~1 mg/mL (~6.94 mM) |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (17.34 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (17.34 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (17.34 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT03692078 | COMPLETED | Other: OTDN product 1 Other: OTDN product 2 Other: Tobacco Cessation |
Tobacco Use | Altria Client Services LLC | 2018-05-30 | Not Applicable |
NCT02323438 | COMPLETED | Other: Usual Brand Cigarette Other: Electronic Cigarette #1 Other: Electronic Cigarette #2 Other: Leading U.S. Nicotine Gum |
Smoking | R.J. Reynolds Vapor Company | 2014-12 | Not Applicable |