D-Lin-MC3-DMA

别名: D-Lin-MC3-DMA; MC 3; RV-28; MC3; DLin-MC3-DMA; (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate; Q0J6FQ6FKP; D-Lin-MC3-DMA (Excipient); RV 28; MC-3; RV28; DLin-MC3-DMA; Dlin-mc3-dma
目录号: V20104 纯度: ≥98%
D-Lin-MC3-DMA 是一种有效的可电离/阳离子脂质,已用于合成脂质纳米颗粒(LNP、基因载体)以递送 siRNA。
D-Lin-MC3-DMA CAS号: 1224606-06-7
产品类别: Liposome
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
D-Lin-MC3-DMA 是一种有效的可电离/阳离子脂质,已用于合成脂质纳米颗粒(LNP、基因载体)以递送 siRNA。它是一种有效的体内 siRNA 递送载体。 D-Lin-MC3-DMA 还可用于设计用于体外和体内递送质粒 DNA (pDNA) 的脂质纳米粒子。含有 D-Lin-MC3-DMA 的 LNP 系统可以成为高效、无毒的 pDNA 递送系统,用于体外和体内基因表达。
生物活性&实验参考方法
靶点
ionizable cationic lipid; siRNA delivery
体外研究 (In Vitro)
含LNP质粒的制备[1]
LNP-pDNA的制备如之前在J Phys Chem B,119(28)(2015),第8698-8706页中所述。将氨基脂质、辅助脂质、胆固醇和PEG-DMG以50/10/39/1的摩尔比溶解在乙醇中。将纯化的pCI-FLuc(表达萤火虫荧光素酶)或pCAX-eGFP(表达eGFP)溶解在pH 4至0.116mg/ml的25mM乙酸钠中。使用微型混合器混合溶液。对于大规模制剂,如Pharm Res,22(3)(2005),第362-372页所述,通过T型接头混合器进行混合。除非另有说明,否则所有制剂均以每μmol脂质0.029mg DNA的浓度生产(对应于N/P电荷比为6.0)。
含DNA脂质颗粒分析[1]
粒径、脂质浓度、pDNA包埋和总pDNA浓度如之前在J Phys Chem B,119(28)(2015),第8698-8706页和J Control Release,196(2014),第106-112页中所述进行测量。Zeta电位的测量方法如前所述,见《分子无机酸》,3(2014),第e210页。
含有二硬脂酰磷酸胆碱(DSPC)的脂质纳米粒(LNPs)和可电离的氨基脂质,如二氢吲哚甲基-4-二甲氨基丁酸酯(DLin-MC3-DMA),是体内有效的siRNA递送载体。在这里,我们探索了类似的LNP系统作为质粒DNA(pDNA)转染试剂的实用性。结果表明,用不饱和PC替代DSPC,用相关脂质DLin-KC2-DMA替代DLin-MC3-DMA,可在体外产生高效的HeLa细胞转染试剂。此外,这些制剂在各种哺乳动物细胞系中表现出优异的转染性能,在原代细胞培养中的转染效率接近90%。这些转染水平等于或大于Lipofectamine所达到的水平,毒性大大降低[1]。
体内研究 (In Vivo)
有效的内部 siRNA 递送载体是含有可电离磷酸酯的磷酸盐纳米粒子 (LNP),例如二亚油基甲基-4-二甲基磷酸酯 (DLin-MC3-DMA) 和二硬脂基乙酰磷脂酰胆碱 (DSPC)。 LNP-siRNA 系统程序的摩尔比为 50/10/38.5/1.5 (PEG)-Pallet,经过调整,可在静脉注射后在肝细胞中实现最大的基因沉默功效。它包含DLin-MC3-DMA (MC3)、DSPC、溶液和聚合溶液。 DLin-MC3-DMA 改进的 pKa 值大大提高了功效 [1]。
在小鼠中,当siRNA剂量为1mg/kg时,与MC3的LNPs相比,ALC-0315的LNPs对FVII和ADAMTS13的敲除分别高出2倍和10倍。在高剂量(5mg/kg)下,ALC-0315 LNPs增加了肝毒性标志物(ALT和胆汁酸),而相同剂量的MC3 LNPs则没有。这些结果表明,ALC-0315 LNPs在小鼠肝细胞和HSC中实现了siRNA介导的靶蛋白的有效敲除,尽管在高剂量后可以观察到肝毒性的标志物。本研究提供了一个初步的比较,可能为开发具有最大疗效和有限毒性的可电离阳离子LNP疗法提供信息。[2]
细胞实验
培养细胞的体外转染研究[1]
HeLa、HepG2和Hep3B细胞在含有10%FBS的DMEM中培养。PC12和MCF7细胞在含有10%FBS的RPMI 1640中培养。LNPs以0.75-6.0μg/ml pDNA稀释到培养基中。治疗后24小时进行萤光素酶测定。在无血清治疗的情况下,LNP-pDNA系统仅稀释到培养基中。为了研究ApoE的作用,从杰克逊实验室购买了野生型(C57BL/6)和ApoE-/-(B6.129P2-Poetm1Unc/J)小鼠血清。将LNP-pDNA系统稀释到含有每种血清10%的培养基中。将测量的发光归一化为皮尔斯BCA蛋白测定法测量的蛋白质含量。
体外LNP摄取测量[1]
如前所述,进行了LNP制剂的细胞摄取。使用了29个用DiI-C18(总脂质0.2 mol%)标记的LNP pDNA。使用Cellomics Arrayscan VTI HCS阅读器对板进行成像。
动物实验
In vivo transfection by injection of LNP-pDNA[1]
Stage ~19-20 white leghorn chicken embryos were stained with neutral red dye, and a small tear was made in the extraembryonic membranes over the forelimb. LNP formulations mixed with ~0.1% Fast Green dye was injected at the distal forelimb at 10 μg/ml pDNA, using a Picospritzer II microinjector (Parker Hannifin Corp). Eggs were incubated overnight. Embryos were rinsed and fixed in 4% paraformaldehyde in PBS, and GFP fluorescence was recorded with a Leica MZFLIII stereofluorescence microscope.
Transfection of primary embryonic mesenchyme and analysis of reagent toxicity[1]
White leghorn chicken embryos at stage 24 were removed and dissected in Hanks buffered saline solution (HBSS). Forelimbs were pooled and treated for 1 h in dispase to remove epithelial ectoderm. Limb mesenchyme was dissociated, and resuspended in DMEM with 5% FBS and 1% penicillin/streptomycin. Cells were plated onto 96-well plates at a density of 2 × 105 or 2 × 107 cells/ml and treated with 0-40 μg/ml LNP-pDNA. Lipofectamine was used as per manufacturer's protocol. Cultures were incubated overnight at 37 °C and resuspended in PBS buffer for expression analysis using a BD LSRII flow cytometer. Cell survival was assessed in low-density cultures after 24 h of treatment, by counting the adherent cells remaining after PBS washes. Viability was determined based on average counts of all adherent cells within a single field of view (100×) normalized to cell counts of untreated cultures.
LNP-siRNA injections[2]
siFVII, siADAMTS13, and siLuc were encapsulated in LNPs containing either ALC-0315 or MC3 as the ionizable cationic lipid. We injected mice with 1 mg siRNA per kg body weight (mg/kg) for knockdown studies, and 5 mg/kg dose for toxicity studies. A dose of 1 mg/kg siRNA in mice is standard for inducing knockdown of mRNA for proteins made in hepatocytes using siRNA-LNPs, whereas 5 mg/kg is a higher dose than the one that would normally be used in mice.3 The recommended dose of ONPATTRO (the clinically approved siRNA for hATTR) is 0.3 mg/kg, which corresponds to a human equivalent dose (HED) of 3.69 mg/kg in mice when using body surface area conversion. One week after administration, liver tissue and blood were collected to measure target mRNA and protein levels, respectively, and compared to siLuc-treated mice; half-lives of plasma FVII and ADAMTS13 are 3–6 hours, and 2–3 days, respectively.23,24 mRNA and protein quantification, and toxicity studies are described further below.
Toxicological analysis[2]
Mice were injected IV with either PBS, or with siLuc encapsulated in LNPs with ALC-0315 (siLuc-ALC-0315) or MC3 (siLuc-MC3) at 5 mg/kg (N = 4). While a dose of any LNP at 10 mg/kg usually causes severe toxicity, such as inflammation and liver necrosis, the toxicity after a 5 mg/kg dose depends on the lipid formulation.26,27 Five hours after the injection, mice were sacrificed, and serum samples were collected as described above. Serum samples were submitted to Idexx BioAnalytics for a toxicology panel. Aspartate aminotransferase (AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), bile acids, total bilirubin (TBIL), blood urea nitrogen (BUN), creatine (CREA), gamma-glutamyl transferase (GGT) levels were analyzed. To note, data regarding bile acid levels in mice treated with PBS and with siLuc-ALC-0315 had N = 3 due to the presence of an outlier in each group (data not shown). The presence of the outliers would have not altered the conclusion, siLuc-ALC-0315 treated mice would have had an even higher bile acid mean and would have been more statistically significant from the PBS-treated mice. Outliers were determined via the ROUT method using GraphPad Prism although limitations such as our small sample size were considered. Bile acid levels commonly range from 0 to 6 μmol/L; however, our results were likely not biologically possible (>130 μmol/L).
参考文献

[1]. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine. 2017 May;13(4):1377-1387.

[2]. Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm. 2022;19(7):2175-2182.

其他信息
Lipid nanoparticles (LNPs) containing distearoylphosphatidlycholine (DSPC), and ionizable amino-lipids such as dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA) are potent siRNA delivery vehicles in vivo. Here we explore the utility of similar LNP systems as transfection reagents for plasmid DNA (pDNA). It is shown that replacement of DSPC by unsaturated PCs and DLin-MC3-DMA by the related lipid DLin-KC2-DMA resulted in highly potent transfection reagents for HeLa cells in vitro. Further, these formulations exhibited excellent transfection properties in a variety of mammalian cell lines and transfection efficiencies approaching 90% in primary cell cultures. These transfection levels were equal or greater than achieved by Lipofectamine, with much reduced toxicity. Finally, microinjection of LNP-eGFP into the limb bud of a chick embryo resulted in robust reporter-gene expression. It is concluded that LNP systems containing ionizable amino lipids can be highly effective, non-toxic pDNA delivery systems for gene expression both in vitro and in vivo.In summary, the results presented in this study show that LNP formulations of pDNA containing ionizable cationic lipids can be highly effective transfection reagents in vitro that are significantly less toxic than commercial reagents such as Lipofectamine. LNP systems containing DLin-KC2-DMA and unsaturated helper lipids are also potent systems for transfecting primary cells in vitro and in vivo. It is anticipated that these systems will be of considerable utility for transfection of developing tissues in vitro with attendant potential for gene editing applications.[1]
Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity. This work represents proof-of-concept that ionizable cationic LNPs can be used to access and knockdown HSCs-specific targets like ADAMTS13. It shows there are differences in efficacy of MC3 and ALC-0315, which are two of the three clinically approved ionizable cationic lipids used in the LNP delivery platform. Insights from this head-to-head comparison may enable the optimization of RNA-based agents to modulate expression of proteins that were previously inaccessible in vivo for research and therapeutic purposes.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C43H79NO2
分子量
642.0929
精确质量
641.611
元素分析
C, 80.43; H, 12.40; N, 2.18; O, 4.98
CAS号
1224606-06-7
相关CAS号
1224606-06-7 ; 1258299-72-7 (deleted)
PubChem CID
49785164
外观&性状
Colorless to light yellow liquid
密度
0.886±0.06 g/cm3(Predicted)
沸点
670.2±43.0 °C(Predicted)
LogP
13.647
tPSA
29.54
氢键供体(HBD)数目
0
氢键受体(HBA)数目
3
可旋转键数目(RBC)
36
重原子数目
46
分子复杂度/Complexity
687
定义原子立体中心数目
0
SMILES
O(C(CCCN(C)C)=O)C(CCCCCCCC/C=C\C/C=C\CCCCC)CCCCCCCC/C=C\C/C=C\CCCCC
InChi Key
NRLNQCOGCKAESA-KWXKLSQISA-N
InChi Code
InChI=1S/C43H79NO2/c1-5-7-9-11-13-15-17-19-21-23-25-27-29-31-33-35-38-42(46-43(45)40-37-41-44(3)4)39-36-34-32-30-28-26-24-22-20-18-16-14-12-10-8-6-2/h13-16,19-22,42H,5-12,17-18,23-41H2,1-4H3/b15-13-,16-14-,21-19-,22-20-
化学名
(6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate
别名
D-Lin-MC3-DMA; MC 3; RV-28; MC3; DLin-MC3-DMA; (6Z,9Z,28Z,31Z)-Heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino)butanoate; Q0J6FQ6FKP; D-Lin-MC3-DMA (Excipient); RV 28; MC-3; RV28; DLin-MC3-DMA; Dlin-mc3-dma
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
Ethanol : ~125 mg/mL (~194.68 mM)
DMSO : ~100 mg/mL (~155.74 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 6.25 mg/mL (9.73 mM) in 10% DMSO + 90% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 5 mg/mL (7.79 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

View More

配方 3 中的溶解度: 5 mg/mL (7.79 mM) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。


配方 4 中的溶解度: ≥ 2.5 mg/mL (3.89 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL 澄清的 DMSO 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 5 中的溶解度: 2.5 mg/mL (3.89 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将100μL 25.0mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 6 中的溶解度: ≥ 2.5 mg/mL (3.89 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

配方 7 中的溶解度: ≥ 2.5 mg/mL (3.89 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若要配制1 mL工作液,可将100 μL 25.0 mg/mL 澄清DMSO 储备液加入到900 μL 玉米油中,混匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.5574 mL 7.7871 mL 15.5741 mL
5 mM 0.3115 mL 1.5574 mL 3.1148 mL
10 mM 0.1557 mL 0.7787 mL 1.5574 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们