Gamma-aminobutyric acid

别名: DF468; DF 468; Aminalon γ-氨基丁酸;gamma-氨基丁酸;4-氨基丁酸;氨酷酸;4(GAMMA)-氨基丁酸; 伽马氨基丁酸;丁氨酸;4-氨基丁酸;Γ-氨基丁酸;Γ-丁胺酸;四氨基丁酸;r-氨基丁酸;4-Aminobutyric Acid 4-氨基丁酸;4-氨基丁酸(GABA);4-胺基丁酸;y-氨基丁酸;γ-aminobutyric acid; γ-氨基丁酸 标准品;γ-氨基丁酸(GABA);γ-氨基丁酸标准品;γ-氨酪酸;氨基丁酸;并[1,2 -13C2 ] -4 - 氨基丁酸标准品;伽玛氨基丁酸;4-氨基丁酸;γ-Aminobutyric acid;4-氨基丁酸;氨酪酸;4-氨基正丁酸
目录号: V20487 纯度: ≥98%
γ-氨基丁酸(4-氨基丁酸)是成年哺乳动物大脑中主要的抑制性神经递质,可以与离子型 GABAA 受体和代谢型 GABAB 受体结合。
Gamma-aminobutyric acid CAS号: 56-12-2
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
50mg
100mg
250mg
500mg
1g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
γ-氨基丁酸(4-氨基丁酸)是成年哺乳动物大脑中主要的抑制性神经递质,可以与离子型 GABAA 受体和代谢型 GABAB 受体结合。 γ-氨基丁酸阻断中枢神经系统中的特定信号并产生镇静作用。
生物活性&实验参考方法
体外研究 (In Vitro)
γ-氨基丁酸 (30 μM) 使皮质祖细胞(E16 细胞)去极化,在心室区 (VZ) 细胞中引起内向电流,并在 5 μM 的半最大响应浓度下抑制 DNA 合成 [3]。 γ-氨基丁酸(1–5 μM;18 小时)可增加皮质板 (cp) 细胞的运动性并抑制迁移,而 G 蛋白激活则参与趋化信号传导。 GAD 由 cp 神经元表达。由于 γ-氨基丁酸激活 GABA A 受体,生长受到限制,细胞周期停滞在 S 期 [5]。
体内研究 (In Vivo)
γ-氨基丁酸(33.95、102.25、306.75 mg/kg;口服;单剂量)可以改善小鼠的睡眠能力[6]。 ?在暴露于邻苯二甲酸二(2-乙基己基)酯的大鼠 (DEHP) 中,γ-氨基丁酸(1、2、4? mg/kg/d;口服;30 天)可减少焦虑、改善食物消耗并修复与暴露相关的损伤[7]。
细胞实验
细胞迁移测定[4]
细胞类型:皮质板 (cp) 神经元
测试浓度: 1-5 μM
孵育时间: 18 小时
实验结果: 通过 G 蛋白激活促进运动,并通过 GABAA 受体介导的去极化诱导迁移阻断引诱剂。
动物实验
Animal/Disease Models: Pathogen-free (SPF) Bagg albino (Balb/c) mice (18–20 g, 8 weeks old) [6]
Doses: 33.95, 102.25, 306.75 mg/kg single dose; administered at 20 mL/kg; Measured results in hrs (hrs (hours)): more effectively extend sleep time, increase sleep rate, and shorten sleep latency.

Animal/Disease Models: SD (SD (Sprague-Dawley)) rats induced by DEHP (500 mg/kg) [7]
Doses: 1, 2, 4 mg/kg
Route of Administration: po (oral gavage); combined administration; 30 days
Experimental Results: Treated with DEHP Levels of nitric oxide and nitric oxide synthase are diminished in rats.
参考文献

[1]. Effects of dietary gamma-aminobutyric acid supplementation on the intestinal functions in weaning piglets. Food Funct. 2019 Jan 2.

[2]. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol. 2009 May 1;514(1):74-91.

其他信息
Gamma-aminobutyric acid is a gamma-amino acid that is butanoic acid with the amino substituent located at C-4. It has a role as a signalling molecule, a human metabolite, a Saccharomyces cerevisiae metabolite and a neurotransmitter. It is a gamma-amino acid and a monocarboxylic acid. It is functionally related to a butyric acid. It is a conjugate acid of a gamma-aminobutyrate. It is a tautomer of a gamma-aminobutyric acid zwitterion.
The most common inhibitory neurotransmitter in the central nervous system.
gamma-Aminobutyric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
4-Aminobutanoate has been reported in Angelica gigas, Microchloropsis, and other organisms with data available.
Gamma-Aminobutyric Acid is a naturally occurring neurotransmitter with central nervous system (CNS) inhibitory activity. Gamma-aminobutyric acid (GABA), converted from the principal excitatory neurotransmitter glutamate in the brain, plays a role in regulating neuronal excitability by binding to its receptors, GABA-A and GABA-B, and thereby causing ion channel opening, hyperpolarization and eventually inhibition of neurotransmission.
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter found in the nervous systems of widely divergent species. It is the chief inhibitory neurotransmitter in the vertebrate central nervous system. In vertebrates, GABA acts at inhibitory synapses in the brain. GABA acts by binding to specific transmembrane receptors in the plasma membrane of both pre- and postsynaptic neurons. This binding causes the opening of ion channels to allow either the flow of negatively-charged chloride ions into the cell or positively-charged potassium ions out of the cell. This will typically result in a negative change in the transmembrane potential, usually causing hyperpolarization. Three general classes of GABA receptor are known. These include GABAA and GABAC ionotropic receptors, which are ion channels themselves, and GABAB metabotropic receptors, which are G protein-coupled receptors that open ion channels via intermediaries (G proteins). Neurons that produce GABA as their output are called GABAergic neurons, and have chiefly inhibitory action at receptors in the vertebrate. Medium Spiny Cells are a typical example of inhibitory CNS GABAergic cells. GABA exhibits excitatory actions in insects, mediating muscle activation at synapses between nerves and muscle cells and also the stimulation of certain glands. GABA has also been shown to have excitatory roles in the vertebrate, most notably in the developing cortex. Organisms synthesize GABA from glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phosphate as a cofactor. It is worth noting that this involves converting the principal excitatory neurotransmitter (glutamate) into the principal inhibitory one (GABA). Drugs that act as agonists of GABA receptors (known as GABA analogues or GABAergic drugs) or increase the available amount of GABA typically have relaxing, anti-anxiety and anti-convulsive effects. Doses of GABA 1 to 3 g orally also have been used effectively to raise the IQ of mentally retarded persons. GABA is found to be deficient in cerebrospinal fluid and brain in many studies of experimental and human epilepsy. Benzodiazepines (such as Valium) are useful in status epilepticus because they act on GABA receptors. GABA increases in the brain after administration of many seizure medications. Hence, GABA is clearly an antiepileptic nutrient. Inhibitors of GAM metabolism can also produce convulsions. Spasticity and involuntary movement syndromes, e.g., Parkinson's, Friedreich's ataxia, tardive dyskinesia, and Huntington's chorea are all marked by low GABA when amino acid levels are studied. Trials of 2 to 3 g of GABA given orally have been effective in various epilepsy and spasticity syndromes. Agents that elevate GABA also are useful in lowering hypertension. Three grams orally have been effective in control of blood pressure. GABA is decreased in various encephalopathies. GABA can reduce appetite and is decreased in hypoglycemics. GABA reduces blood sugar in diabetics. Chronic brain syndromes can also be marked by deficiency of GABA; GABA has many promising uses in therapy. Cerebrospinal fluid levels of GABA may be useful in diagnosing very serious diseases. Vitamin B6, manganese, taurine and lysine can increase both GABA synthesis and effects, while aspartic acid and glutamic acid probably inhibit GABA effects. The brain's principal inhibitory neurotransmitter, GABA, along with serotonin and norepinephrine, is one of several neurotransmitters that appear to be involved in the pathogenesis of anxiety and mood disorders. There are two principal subtypes of postsynaptic GABA receptor complexes, the GABA-A and GABA-B receptor complexes. Activation of the GABA-B receptor by GABA causes neuronal membrane hyperpolarization and a resultant inhibition of neurotransmitter release. In addition to binding sites for GABA, the GABA-A receptor has binding sites for benzodiazepines, barbiturates, and neurosteroids. GABA-A receptors are coupled to chloride ion channels; activation of the receptor induces increased inward chloride ion flux, resulting in membrane hyperpolarization and neuronal inhibition. After release into the synapse, free GABA that does not bind to either the GABA-A or GABA-B receptor complexes can be taken up by neurons and glial cells. Four different membrane transporter proteins, known as GAT-1, GAT-2, GAT-3, and BGT-1, which differ in their distribution in the CNS, are believed to mediate the uptake of synaptic GABA into neurons and glial cells. The GABA-A receptor subtype regulates neuronal excitability and rapid changes in fear arousal, such as anxiety, panic, and the acute stress response. Drugs that stimulate GABA-A receptors, such as the benzodiazepines and barbiturates, have anxiolytic and anti-seizure effects via GABA-A-mediated reduction of neuronal excitability, which effectively raises the seizure threshold. In support of the anticonvulsant and anxiolytic effects of the GABA-A receptor are findings that GABA-A antagonists produce convulsions in animals and the demonstration that there is decreased GABA-A receptor binding in a positron emission tomography (PET) study of patients with panic disorder. Low plasma GABA has been reported in some depressed patients and, in fact, may be a useful trait marker for mood disorders.
The most common inhibitory neurotransmitter in the central nervous system.
See also: ... View More ...
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C4H9NO2
分子量
103.1198
精确质量
103.063
CAS号
56-12-2
相关CAS号
53504-43-1;5959-35-3 (hydrochloride);6610-05-5 (mono-hydrochloride salt);70582-09-1 (calcium salt (2:1))
PubChem CID
119
外观&性状
White to off-white solid powder
密度
1.1±0.1 g/cm3
沸点
248.0±23.0 °C at 760 mmHg
熔点
195-204ºC
闪点
103.8±22.6 °C
蒸汽压
0.0±1.0 mmHg at 25°C
折射率
1.465
LogP
-0.64
tPSA
63.32
氢键供体(HBD)数目
2
氢键受体(HBA)数目
3
可旋转键数目(RBC)
3
重原子数目
7
分子复杂度/Complexity
62.7
定义原子立体中心数目
0
SMILES
O([H])C(C([H])([H])C([H])([H])C([H])([H])N([H])[H])=O
别名
DF468; DF 468; Aminalon
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~50 mg/mL (~484.87 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 100 mg/mL (969.74 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 9.6974 mL 48.4872 mL 96.9744 mL
5 mM 1.9395 mL 9.6974 mL 19.3949 mL
10 mM 0.9697 mL 4.8487 mL 9.6974 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们