规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
Other Sizes |
|
靶点 |
DNA synthesis (Capan2 cells) ( IC50 = 12 nM ); DNA synthesis (BxPC3 cells) ( IC50 = 18 nM ); DNA synthesis (MIAPaCa2 cells) ( IC50 = 40 nM ); DNA synthesis (PANC1 cells) ( IC50 = 50 nM )
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:吉西他滨诱导 BxPC-3、PANC-1 和 MIA PaCa-2 细胞中的 NF-κB 活性,并降低 BxPC-3 和 PANC-1 细胞中 NF-κB 抑制剂 IκBα 的水平。用低剂量吉西他滨处理 BxPC-3 细胞 48 小时会导致 NF-κB 结合呈剂量依赖性增加。相比之下,用较高吉西他滨剂量处理 48 小时的 BxPC-3 细胞中 NF-κB DNA 结合减少;然而,用这些较高剂量进行 24 小时处理会增加 BxPC-3 细胞中 NF-κB 的结合。细胞测定:将 BxPC-3、MIA PaCa-2 和 PANC-1 细胞接种到 96 孔板中。 24小时后,用媒介物、DMAPT和/或吉西他滨再处理细胞24小时或48小时。使用细胞死亡检测 ELISA 来定量细胞凋亡,以检测细胞质组蛋白相关 DNA 片段的量并相对于载体处理的细胞进行表达。
|
||
体内研究 (In Vivo) |
本研究的目的是评估吉西他滨肺部给药的安全性,并在动物模型中确定每周肺给药的最大耐受剂量。五组八只Wistar大鼠接受2、4、6或8mg/kg剂量的吉西他滨或载体溶液,通过气管内喷雾进行肺沉积闪烁显像。为了记录消化暴露的安全性,五组八只大鼠接受相同剂量的吉西他滨或灌胃载体溶液。计划每周一次,并在第64天对活体动物进行血细胞计数和组织学检查。闪烁显像证实316次喷雾给药中有310次(98%)出现肺部沉积,沉积模式均匀。通过肺部给药的吉西他滨最大耐受剂量为4 mg/kg。在该剂量下,连续9周每周给药一次,除血小板和红细胞计数减少外,没有与化疗相关的死亡,也没有临床、组织学或血液学毒性症状,没有临床意义。在2、4和6 mg/kg的剂量下,吉西他滨经口给药的毒性在体重减轻和白细胞毒性方面高于经肺给药。吉西他滨的最大耐受剂量为4 mg/kg,对大鼠进行肺部给药是安全的,每周一次,持续9周。在同等剂量下,吉西他滨的肺部毒性低于口服给药。[2]
与 PBS 治疗的小鼠相比,吉西他滨治疗的小鼠瘤内 NF-κB 活性显着升高(1.3 至 1.8 倍),表明吉西他滨也诱导 NF-κB 激活。 |
||
细胞实验 |
在 96 孔板中,接种 BxPC-3、MIA PaCa-2 和 PANC-1 细胞。 24小时后用媒介物、DMAPT和/或吉西他滨进一步处理细胞24或48小时。使用细胞死亡检测 ELISA,通过计算细胞质组蛋白相关 DNA 片段的数量来测量与载体处理的细胞相关的细胞凋亡。
接受吉西他滨(2',2'-二氟脱氧胞苷)治疗的癌症患者最终可能产生耐药性。最近,我们实验室公布的数据表明,吉西他滨与膳食药物吲哚-3-甲醇(I3C)的疗效增强。目前的研究探讨了这种I3C增强疗效的可能机制。检测了几种胰腺细胞系(BxPC-3、Mia Paca-2、PL-45、AsPC-1和PANC-1)单独使用I3C和与吉西他滨联合使用对人平衡核苷转运蛋白1(hENT1)表达的调节,hENT1是吉西他滨的主要转运蛋白。I3C显著(p<0.01)上调了几种细胞系中hENT1的表达。单独使用吉西他滨对hENT1表达没有影响。然而,吉西他滨与I3C联合使用进一步增加了hENT1的表达。细胞活力测定显示I3C对正常细胞hTERT-HPNE没有影响。hENT1特异性抑制剂硝基苄硫肌苷显著消除了I3C诱导的吉西他滨细胞毒性,进一步证明了其特异性。本研究表明,hENT1表达的上调可能是I3C和吉西他滨加性作用的一种新机制。[1] |
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption: Peak plasma concentrations of gemcitabine range from 10 to 40 mg/L following a 30-minute intravenous infusion, and are reached at 15 to 30 minutes. One study showed that steady-state concentrations of gemcitabine showed a linear relationship to dose over the dose range 53 to 1000 mg/m2. Gemcitabine triphosphate, the active metabolite of gemcitabine, can accumulate in circulating peripheral blood mononuclear cells. In one study, the Cmax of gemcitabine triphosphate in peripheral blood mononuclear cells occurred within 30 minutes of the end of the infusion period and increased increased proportionally with gemcitabine doses of up to 350 mg/m2.
Route of Elimination: Gemcitabine mainly undergoes renal excretion. Within a week following administration of a single dose of 1000 mg/m2 infused over 30 minutes, about 92-98% of the dose was recovered in urine where 89% of the recovered dose was excreted as difluorodeoxyuridine (dFdU) and less than 10% as gemcitabine. Monophosphate, diphosphate, or triphosphate metabolites of gemcitabine are not detectable in urine. In a single-dose study, about 1% of the administered dose was recovered in the feces. Volume of Distribution: In patients with various solid tumours, the volume of distribution increased with infusion length. The volume of distribution of gemcitabine was 50 L/m2 following infusions lasting less than 70 minutes. For long infusions, the volume of distribution rose to 370 L/m2. Gemcitabine triphosphate, the active metabolite of gemcitabine, accumulates and retains in solid tumour cells _in vitro_ and _in vivo_. It is not extensively distributed to tissues after short infusions that last less than 70 minutes. It is not known whether gemcitabine crosses the blood-brain barrier, but gemcitabine is widely distributed into tissues, including ascitic fluid. In rats, placental and lacteal transfer occurred rapidly at five to 15 minutes following drug administration. Clearance: Following intravenous infusions lasting less than 70 minutes, clearance ranged from 41 to 92 L/h/m2 in males and ranged from 31 to 69 L/h/m2 in females. Clearance decreases with age. Females have about 30% lower clearance than male patients. Metabolism / Metabolites: Following administration and uptake into cancer cells, gemcitabine is initially phosphorylated by deoxycytidine kinase (dCK), and to a lower extent, the extra-mitochondrial thymidine kinase 2 to form gemcitabine monophosphate (dFdCMP). dFdCMP is subsequently phosphorylated by nucleoside kinases to form active metabolites, gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate (dFdCTP). Gemcitabine is also deaminated intracellularly and extracellularly by cytidine deaminase to its inactive metabolite 2′,2′-difluorodeoxyuridine or 2´-deoxy-2´,2´-difluorouridine (dFdU). Deamination occurs in the blood, liver, kidneys, and other tissues, and this metabolic pathway accounts for most of drug clearance. Biological Half-Life: Following intravenous infusions lasting less than 70 minutes, the terminal half-life ranged from 0.7 to 1.6 hours. Following infusions ranging from 70 to 285 minutes, the terminal half-life ranged from 4.1 to 10.6 hours. Females tend to have longer half-lives than male patients. Gemcitabine triphosphate, the active metabolite of gemcitabine, can accumulate in circulating peripheral blood mononuclear cells. The terminal half-life of gemcitabine triphosphate, the active metabolite, from mononuclear cells ranges from 1.7 to 19.4 hours. |
||
毒性/毒理 (Toxicokinetics/TK) |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Most sources consider breastfeeding to be contraindicated during maternal antineoplastic drug therapy. It might be possible to breastfeed safely during intermittent gemcitabine therapy with an appropriate period of breastfeeding abstinence; the manufacturer recommends an abstinence period of at least 1 week after the last dose. Chemotherapy may adversely affect the normal microbiome and chemical makeup of breastmilk. Women who receive chemotherapy during pregnancy are more likely to have difficulty nursing their infant. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk A telephone follow-up study was conducted on 74 women who received cancer chemotherapy at one center during the second or third trimester of pregnancy to determine if they were successful at breastfeeding postpartum. Only 34% of the women were able to exclusively breastfeed their infants, and 66% of the women reported experiencing breastfeeding difficulties. This was in comparison to a 91% breastfeeding success rate in 22 other mothers diagnosed during pregnancy, but not treated with chemotherapy. Other statistically significant correlations included: 1. mothers with breastfeeding difficulties had an average of 5.5 cycles of chemotherapy compared with 3.8 cycles among mothers who had no difficulties; and 2. mothers with breastfeeding difficulties received their first cycle of chemotherapy on average 3.4 weeks earlier in pregnancy. Of the 9 women who received a fluorouracil-containing regimen, 8 had breastfeeding difficulties. |
||
参考文献 |
|
||
其他信息 |
Gemcitabine Hydrochloride is the hydrochloride salt of an analogue of the antimetabolite nucleoside deoxycytidine with antineoplastic activity. Gemcitabine is converted intracellularly to the active metabolites difluorodeoxycytidine di- and triphosphate (dFdCDP, dFdCTP). dFdCDP inhibits ribonucleotide reductase, thereby decreasing the deoxynucleotide pool available for DNA synthesis; dFdCTP is incorporated into DNA, resulting in DNA strand termination and apoptosis.
A deoxycytidine antimetabolite used as an antineoplastic agent. Drug Indication Treatment of urothelial carcinoma |
分子式 |
C9H11F2N3O4.HCI
|
|
---|---|---|
分子量 |
299.66
|
|
精确质量 |
299.048
|
|
元素分析 |
C, 36.07; H, 4.04; Cl, 11.83; F, 12.68; N, 14.02; O, 21.36
|
|
CAS号 |
122111-03-9
|
|
相关CAS号 |
|
|
PubChem CID |
60749
|
|
外观&性状 |
White solid powder
|
|
沸点 |
482.7ºC at 760 mmHg
|
|
熔点 |
>250°C dec.
|
|
蒸汽压 |
2.41E-11mmHg at 25°C
|
|
LogP |
0.094
|
|
tPSA |
110.6
|
|
氢键供体(HBD)数目 |
4
|
|
氢键受体(HBA)数目 |
6
|
|
可旋转键数目(RBC) |
2
|
|
重原子数目 |
19
|
|
分子复杂度/Complexity |
426
|
|
定义原子立体中心数目 |
3
|
|
SMILES |
Cl[H].FC1([C@]([H])(N2C(N=C(C([H])=C2[H])N([H])[H])=O)O[C@]([H])(C([H])([H])O[H])[C@@]1([H])O[H])F
|
|
InChi Key |
OKKDEIYWILRZIA-OSZBKLCCSA-N
|
|
InChi Code |
InChI=1S/C9H11F2N3O4.ClH/c10-9(11)6(16)4(3-15)18-7(9)14-2-1-5(12)13-8(14)17;/h1-2,4,6-7,15-16H,3H2,(H2,12,13,17);1H/t4-,6-,7-;/m1./s1
|
|
化学名 |
4-amino-1-[(2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one;hydrochloride
|
|
别名 |
Abbreviations: dFdC; dFdCyd; LY188011; LY-188011; LY 188011; gemcitabine; Gemzar
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (6.94 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (6.94 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (6.94 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: Saline: 20 mg/mL 配方 5 中的溶解度: 60 mg/mL (200.23 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶. 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3371 mL | 16.6856 mL | 33.3712 mL | |
5 mM | 0.6674 mL | 3.3371 mL | 6.6742 mL | |
10 mM | 0.3337 mL | 1.6686 mL | 3.3371 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
Testing the Addition of an Anti-cancer Drug, Pembrolizumab, to the Usual Intravesical Chemotherapy Treatment (Gemcitabine) for the Treatment of BCG-Unresponsive Non-muscle Invasive Bladder Cancer
CTID: NCT04164082
Phase: Phase 2   Status: Recruiting
Date: 2024-11-25