| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 500mg |
|
||
| 1g |
|
||
| Other Sizes |
| 药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
The fate of phenoxyethanol in rats and humans has been investigated. More than 90% of an oral dose of 16, 27 or 160 mg/kg body weight of (2-(14)C)phenoxyethanol administered to male Colworth rats by was excreted in the urine within 24 hours of administration. A female rat also excreted about 90% of a dose of 27 mg/kg body weight in the urine within 24 hours. About 2% and 1.3% of the ingested dose was recovered from the exhaled air of female and male rats, respectively. A pharmacokinetic study of phenoxyethanol was performed using a mass spectrometry model for simultaneous analysis of phenoxyethanol (PE) and its major metabolite, phenoxyacetic acid (PAA), in rat plasma, urine, and 7 different tissues. The absolute topical bioavailability of PE was 75.4% and 76.0% for emulsion and lotion, respectively. Conversion of PE to PAA was extensive, with the average AUCPAA-to-AUCPE ratio being 4.4 and 5.3 for emulsion and lotion, respectively. The steady-state tissue-to-plasma PE concentration ratio (Kp) was higher than unity for kidney, spleen, heart, brain, and testis and was lower (0.6) for lung and liver, while the metabolite Kp ratio was higher than unity for kidney, liver, lung, and testis and was lower (0.3) for other tissues. ... An entire oral dose of 11 mg of unlabelled 2-phenoxyethanol was accounted for in the urine of one healthy male volunteer as 2-phenoxyacetic acid. Most of the acid was excreted unconjugated. The fate of 2-phenoxyethanol in rats and humans has been investigated. More than 90% of an oral dose of 16, 27 or 160 mg/kg bw of (2-(14)C)phenoxyethanol given to male Colworth rats by gavage was excreted in the urine within 24 hr. A female rat also excreted about 90% of a dose of 27 mg/kg bw in the urine within 24 hr. Approximately 2 and 1.3% of the ingested dose was recovered from expired air of female and male rats, respectively. The rate of intestinal absorption was rapid, with 60-70% of the excreted (14)C detected at 3 hr and > 95% of the total 4-day urinary (14)C detected within the first 24 hr. Trace amounts of radioactivity were detected in feces. Four days after dosing, only trace amounts of radioactivity remained in the carcass, primarily in the liver (< 0.2% of the dose), fat and muscle. At 4 days, the (14)C concentration in blood was only 0.001. ... NOT READILY ABSORBED THROUGH THE SKIN IN ACUTELY TOXIC AMT. 2-PHENOXYETHANOL (0.1-0.5 ML/L) SEDATED OR ANESTHETIZED FISH WITHIN MINUTES WHEN THE ANIMALS WERE IMMERSED IN THE AGENT. WHEN ADMIN IN THIS WAY, THE ANESTHETIC WAS ABSORBED INTO THE BLOOD STREAM THROUGH THE GILL LAMELLAE. Metabolism / Metabolites The fate of phenoxyethanol in rats and humans has been investigated. The rate of intestinal absorption was rapid, with 60-70% of the excreted (14)C detected at 3 hours and > 95% of the total 4-day urinary (14)C detected within the first 24 hr. Trace amounts of radioactivity were detected in feces. Four days after dosing, only trace amounts of radioactivity remained in the carcass, primarily in the liver (< 0.2% of the dose), fat and muscle. At the 4 day point, the (14)C concentration in blood was measured to be only 0.001. The major metabolite of phenoxyethanol is phenoxyacetic acid. Once hydrolyzed, 2-phenoxyethanol is rapidly absorbed and oxidized to phenoxyacetic acid ... YIELDS PHENOL IN CONIOPHORA, IN PLEUROTUS, & IN POLYSTICTUS ... . /FROM TABLE/ The toxicity of glycol ethers is associated with their oxidation to the corresponding aldehyde and alkoxyacetic acid by cytosolic alcohol dehydrogenase (ADH; EC 1.1.1.1.) and aldehyde dehydrogenase (ALDH; 1.2.1.3). Dermal exposure to these compounds can result in localised or systemic toxicity including skin sensitisation and irritancy, reproductive, developmental and hematological effects. It has previously been shown that skin has the capacity for local metabolism of applied chemicals. Therefore, there is a requirement to consider metabolism during dermal absorption of these compounds in risk assessment for humans. Cytosolic fractions were prepared from rat liver, and whole and dermatomed skin by differential centrifugation. Rat skin cytosolic fractions were also prepared following multiple dermal exposure to dexamethasone, ethanol or 2-butoxyethanol (2-BE). The rate of ethanol, 2-ethoxyethanol (2-EE), ethylene glycol, 2-phenoxyethanol (2-PE) and 2-BE conversion to alkoxyacetic acid by ADH/ALDH in these fractions was continuously monitored by UV spectrophotometry via the conversion of NAD+ to NADH at 340 nm. Rates of ADH oxidation by rat liver cytosol were greatest for ethanol followed by 2-EE >ethylene glycol >2-PE >2-BE. However, the order of metabolism changed to 2-BE >2-PE >ethylene glycol >2-EE >ethanol using whole and dermatomed rat skin cytosolic fractions, with approximately twice the specific activity in dermatomed skin cytosol relative to whole rat skin. This suggests that ADH and ALDH are localised in the epidermis that constitutes more of the protein in dermatomed skin than whole skin cytosol. Inhibition of ADH oxidation in rat liver cytosol by pyrazole was greatest for ethanol followed by 2-EE >ethylene glycol >2-PE >2-BE, but it only inhibited ethanol metabolism by 40% in skin cytosol. Disulfiram completely inhibited alcohol and glycol ether metabolism in the liver and skin cytosolic fractions. Although ADH1, ADH2 and ADH3 are expressed at the protein level in rat liver, only ADH1 and ADH2 are selectively inhibited by pyrazole and they constitute the predominant isoforms that metabolise short-chain alcohols in preference to intermediate chain-length alcohols. However, ADH1, ADH3 and ADH4 predominate in rat skin, demonstrate different sensitivities to pyrazole, and are responsible for metabolising glycol ethers. ALDH1 is the predominant isoform in rat liver and skin cytosolic fractions that is selectively inhibited by disulfiram and responds to the amount of aldehyde formed by the ADH isoforms expressed in these tissues. Thus, the different affinity of ADH and ALDH for alcohols and glycol ethers of different carbon-chain length may reflect the relative isoform expression in rat liver and skin. Following multiple topical exposure, ethanol metabolism increased the most following ethanol treatment, and 2-BE metabolism increased the most following 2-BE treatment. Ethanol and 2-BE may induce specific ADH and ALDH isoforms that preferentially metabolise short-chain alcohols (i.e. ADH1, ALDH1) and longer chain alcohols (i.e. ADH3, ADH4, ALDH1), respectively. Treatment with a general inducing agent such as dexamethasone enhanced ethanol and 2-BE metabolism suggesting induction of multiple ADH isoforms. Studies were conducted... to evaluate the in vitro hemolytic potential of / ethylene glycol phenyl ether/ EGPE and its major metabolite using rabbit red blood cells (RBC). Phenoxyacetic acid (PAA) was identified as a major blood metabolite of EGPE. In vitro exposure of female rabbit erythrocytes indicated EGPE to be considerably more hemolytic than PAA. Oxidized to the corresponding aldehyde and alkoxyacetic acid by alcohol dehydrogenase (ADH; EC 1.1.1.1) and aldehyde dehydrogenase (ALDH; EC 1.2.1.3), respectively. (A15201) |
|---|---|
| 毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
2-Phenoxyethanol is a glycol ether. Glycol ethers can produce toxicity following oxidation to the corresponding aldehyde and alkoxyacetic acid by alcohol dehydrogenase (ADH; EC 1.1.1.1) and aldehyde dehydrogenase (ALDH; EC 1.2.1.3), respectively. (A15201) 2-Phenoxyethanol causes reduction of NMDA-induced membrane currents, indicating a neurotoxic potential for 2-phenoxyethanol. (A15202) Non-Human Toxicity Values LD50 Mouse ip 872 mg/kg bw LD50 Mouse ip ca 333 mg/kg bw LD50 Guinea pig dermal >22180 mg/kg bw LD50 Rabbit dermal >5000 mg/kg bw For more Non-Human Toxicity Values (Complete) data for 2-PHENOXYETHANOL (27 total), please visit the HSDB record page. |
| 参考文献 | |
| 其他信息 |
Therapeutic Uses
Phenoxyethanol (PE) is a preservative added to cosmetics and pharmaceuticals such as antibiotic ointments and solutions, ear-drops, and vaccines. Anti-Infective Agents, Local; Anesthetics Phenoxyethanol has antibacterial properties and is effective against strains of Pseudomonas aeruginosa even in the presence of 20% serum. It is less effective against Proteus vulgaris, other Gram-negative organisms, and Gram-positive organisms. It has been used as a preservative at a concentration of 1%. A wider spectrum of antimicrobial activity is obtained with preservative mixtures of phenoxyethanol and hydroxybenzoates. Phenoxyethanol may be used as a 2.2% solution or a 2% cream for the treatment of superficial wounds, burns, or abscesses infected by Pseudomonas aeruginosa. In skin infection derivatives of phenoxyethanol are used with either cyclic acid or zinc undecenoate. TOPICAL ANTISEPTIC Drug Warnings Peritonitis is the established term for infective inflammation of the peritoneum, whereas serositis generally refers to aseptic inflammation of a serous cavity, including the peritoneum. Serositis may be metabolic, viral, autoimmune, drug induced, genetic, allergic or granulomatous, or due to chemical antiseptics. In ...gynecological department, 4 patients had peritonitis and ascites after laparotomy. Based on the investigation... the solution used for peritoneal lavage (0.1% octenidine dihydrochloride and 2% phenoxyethanol) played a role in the tissue toxicity that caused chemical serositis with effusion. Pharmacodynamics This substance has broad-spectrum antimicrobial activity against bacteria, yeasts, and mold. |
| 分子式 |
C8H10O2
|
|---|---|
| 分子量 |
138.17
|
| 精确质量 |
138.068
|
| CAS号 |
122-99-6
|
| 相关CAS号 |
Phenoxyethanol-d2;21273-38-1;Phenoxyethanol-d4;1219804-65-5
|
| PubChem CID |
31236
|
| 外观&性状 |
Colorless to light yellow liquid
|
| 密度 |
1.1±0.1 g/cm3
|
| 沸点 |
245.2±0.0 °C at 760 mmHg
|
| 熔点 |
11-13 °C
|
| 闪点 |
105.3±14.1 °C
|
| 蒸汽压 |
0.0±0.5 mmHg at 25°C
|
| 折射率 |
1.526
|
| LogP |
1.16
|
| tPSA |
29.46
|
| 氢键供体(HBD)数目 |
1
|
| 氢键受体(HBA)数目 |
2
|
| 可旋转键数目(RBC) |
3
|
| 重原子数目 |
10
|
| 分子复杂度/Complexity |
77.3
|
| 定义原子立体中心数目 |
0
|
| SMILES |
O(C1C([H])=C([H])C([H])=C([H])C=1[H])C([H])([H])C([H])([H])O[H]
|
| InChi Key |
QCDWFXQBSFUVSP-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C8H10O2/c9-6-7-10-8-4-2-1-3-5-8/h1-5,9H,6-7H2
|
| 化学名 |
2-phenoxyethanol
|
| 别名 |
NSC-1864; NSC 1864; Phenoxyethanol
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO : ~100 mg/mL (~723.80 mM)
|
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (18.09 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (18.09 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (18.09 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 7.2375 mL | 36.1873 mL | 72.3746 mL | |
| 5 mM | 1.4475 mL | 7.2375 mL | 14.4749 mL | |
| 10 mM | 0.7237 mL | 3.6187 mL | 7.2375 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。