Pralatrexate (racemic)

别名: PDX; Pralatrexate; 10-Propargyl-10-deazaaminopterin; trade name: Folotyn. 10-炔丙基-10-去氮杂氨基蝶呤; N-(4-(1-((2,4-二氨基-6-蝶啶)甲基)-3-丁炔基)苯甲酰基)-L-谷氨酸; 普拉曲沙;普拉曲沙pralatrexate;普拉曲沙标准品;(2S)-2-[4-[1-(2,4-二氨基碟啶-6-基)戊-4-炔-2-基]苯甲酰胺基]戊二酸;普拉曲沙特
目录号: V0848 纯度: ≥98%
Pralatrexate(PDX;商品名 Folotyn)是一种抗叶酸药物,在结构上是叶酸类似物,是一种有效的选择性二氢叶酸还原酶 (DHFR) 抑制剂,对还原叶酸载体 1 (RFC-1) 表现出高亲和力,具有抗肿瘤和免疫抑制活性。
Pralatrexate (racemic) CAS号: 146464-95-1
产品类别: DHFR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Pralatrexate (racemic):

  • R-普拉曲沙
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
普拉曲沙(PDX;商品名 Folotyn)是一种抗叶酸剂,结构上是叶酸类似物,是一种有效的选择性二氢叶酸还原酶 (DHFR) 抑制剂,对还原叶酸载体 1 (RFC-1) 表现出高亲和力,具有抗肿瘤和免疫抑制作用活动。普拉曲沙已被 FDA 批准用于治疗一种称为外周 T 细胞淋巴瘤 (PTCL) 的癌症。
生物活性&实验参考方法
体外研究 (In Vitro)
当给予不同的 T 淋巴瘤细胞系时,普拉曲沙(100 pM-200 μM;48-72 小时)表现出取决于浓度和时间的细胞毒性。以下是 48 小时和 72 小时的 IC50 值:H9 细胞为 1.1 和 2.5 nM; P12 细胞为 1.7 和 2.4 nM; CEM 细胞为 3.2 和 4.2 nM; PF-382 细胞为 5.5 和 2.7 nM; KOPT-K1 细胞为 1 和 1.7 nM; DND-41 细胞为 97.4 和 1.2 nM; HPB-ALL 细胞为 247.8 nM 和 0.77 nM。治疗 48 小时后,HH 细胞表现出一定的耐药性,72 小时时的 IC50 为 2.8 nM [1]。用 pralidoxate(2-5.5 nM;48-72 小时;H9、HH、P12 和 PF382 细胞)处理会导致强烈的细胞凋亡以及 caspase-8 和 caspase-9 激活 [1]。用普拉曲沙(3 nM;16-48 小时)处理 H9 和 P12 细胞可显着提高 p27 水平,并促进诱导型叶酸载体 1 型 (RFC-1) 在细胞中的积累 [1]。
体内研究 (In Vivo)
与单独使用任一药物相比,硼替佐米 (0.5 mg/kg) 和普拉曲沙 (15 mg/kg;腹腔注射;第 1、4、8 和 11 天;SCID-米色小鼠) 组合可提高疗效 [1]。
细胞实验
细胞毒性测定[1]
细胞类型: T 淋巴瘤细胞系
测试浓度: 100 pM-200 µM
孵育时间: 48 小时、72 小时
实验结果: 证明对多种 T 淋巴瘤细胞系具有浓度和时间依赖性细胞毒性。

细胞凋亡分析[1]
细胞类型: H9、HH、P12 和 PF382 细胞
测试浓度: 2 nM、3 nM , 4 nM, 5.5 nM
孵育时间: 48 小时、72 小时
实验结果: 诱导有效的细胞凋亡和 caspase 激活。

蛋白质印迹分析[1]
细胞类型: H9 和 P12 细胞
测试浓度: 3 nM
孵化持续时间:16小时、24小时、48小时
实验结果:明显增加p27水平并增加RFC-1的积累细胞。
动物实验
Animal/Disease Models: SCID-beige mice (5-7weeks old) injected with HH cells[1]
Doses: 15 mg/kg
Route of Administration: intraperitoneal (ip)injection; on days 1, 4, 8, and 11
Experimental Results: demonstrated superior efficacy in T-cell malignancies.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
With an intravenous formulation, pralatrexate has complete bioavailability. Pralatrexate demonstrates a dose-proportional and linear pharmacokinetics over a dose range of 30-325 mg/m2. Upon an intravenous push over 3 to 5 minutes of a starting dose of 30 mg/m2 racemic pralatrexate for dose 1 of cycle 1, Cmax and AUC0-∞ was estimated to be 5,815 ng/mL and 267,854 ng/mL.min respectively using a noncomparmental pharmacokinetics analysis.Both pralatrexate diastereomers demonstrates a multiphase decline in plasma concentration with a rapid initial fall followed by a slow terminal phase. The initial fall is thought to reflect the clearance of pralatrexate by renal and non-renal mechanism , while the slow terminal phase likely represents the return of pralatrexate from deep intracellular compartments, enterohepatic circulation, or after deglutamination.
Following a single dose of FOLOTYN 30 mg/m2, approximately 34% of the pralatrexate dose was excreted unchanged into urine. Following a radiolabeled pralatrexate dose, 39% (CV = 28%) of the dose was recovered in urine as unchanged pralatrexate and 34% (CV = 88%) in feces as unchanged pralatrexate and/or any metabolites. 10% (CV = 95%) of the dose was exhaled over 24 hours.
The steady-state volume of distribution of pralatrexate S- and R-diastereomers is 105 L and 37 L, respectively.
The total systemic clearance of pralatrexate diastereomers was 417 mL/min (S-diastereomer) and 191 mL/min (R-diastereomer).
The pharmacokinetics of pralatrexate administered as a single agent at a dose of 30 mg/sq m administered as an intravenous push over 3-5 minutes once weekly for 6 weeks in 7-week cycles have been evaluated in 10 patients with PTCL. The total systemic clearance of pralatrexate diastereomers was 417 mL/min (S-diastereomer) and 191 mL/min (R-diastereomer).
Pralatrexate total systemic exposure (AUC) and maximum plasma concentration (Cmax) increased proportionally with dose (dose range 30-325 mg/sq m, including pharmacokinetics data from high dose solid tumor clinical studies). The pharmacokinetics of pralatrexate did not change significantly over multiple treatment cycles, and no accumulation of pralatrexate was observed.
Pralatrexate diastereomers showed a steady-state volume of distribution of 105 L (S-diastereomer) and 37 L (R-diastereomer).
In vitro studies indicate that pralatrexate is approximately 67% bound to plasma proteins.
For more Absorption, Distribution and Excretion (Complete) data for Pralatrexate (7 total), please visit the HSDB record page.
Metabolism / Metabolites
While the liver has been shown to metabolize pralatrexate to some extent, pralatrexate is not significantly metabolized by any CYP450 isozymes or glucuronidases in vitro.
In vitro studies using human hepatocytes, liver microsomes and S9 fractions, and recombinant human CYP450 isozymes showed that pralatrexate is not significantly metabolized by the phase I hepatic CYP450 isozymes or phase II hepatic glucuronidases.
Biological Half-Life
The terminal elimination half-life of pralatrexate was 12-18 hours (coefficient of variance [CV] = 62-120%).
The terminal elimination half-life of pralatrexate was 12-18 hours (coefficient of variance (CV) = 62-120%).
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
Pralatrexate is associated with serum enzyme elevations during therapy, but these abnormalities are generally mild and self-limited, rising to above 5 times ULN in 2% to 6% of patients and rarely requiring dose adjustment. No instances of clinically apparent acute liver injury attributed to pralatrexate have been reported in the literature, but monitoring for liver toxicity is recommended. Pralatrexate has not been linked specifically to sinusoidal obstruction syndrome, but it is rarely used in high doses in neoplastic disease or in conditioning regimens for bone marrow transplantation, situations in which alkylating agents are commonly associated with this complication.
Likelihood score: E* (unlikely but suspected rare cause of liver injury).
Protein Binding
The protein binding of pralatrexate is approximately 67% in vitro.
Interactions
The effect of co-administration of the uricosuric drug probenecid on pralatrexate pharmacokinetics was investigated in a Phase 1 clinical study. Co-administration of increasing doses of probenecid resulted in delayed clearance of pralatrexate and a commensurate increase in exposure.
Due to the contribution of renal excretion (approximately 34%) to the overall clearance of pralatrexate, concomitant administration of drugs that are subject to substantial renal clearance (eg, NSAIDs, trimethoprim/sulfamethoxazole) may result in delayed clearance of pralatrexate.
参考文献

[1]. Pralatrexate Is Synergistic With the Proteasome Inhibitor Bortezomib in in Vitro and in Vivo Models of T-cell Lymphoid Malignancies. Clin Cancer Res. 2010 Jul 15;16(14):3648-58.

[2]. Pralatrexate Is an Effective Treatment for Relapsed or Refractory Transformed Mycosis Fungoides: A Subgroup Efficacy Analysis From the PROPEL Study. Clin Lymphoma Myeloma Leuk. 2012 Aug;12(4):238-43.

[3]. Randomized Phase 2b Study of Pralatrexate Versus Erlotinib in Patients With Stage IIIB/IV Non-Small-Cell Lung Cancer (NSCLC) After Failure of Prior Platinum-Based Therapy. J Thorac Oncol. 2012 Jun;7(6):1041-8.

[4]. A New Analogue of 10-deazaaminopterin With Markedly Enhanced Curative Effects Against Human Tumor Xenografts in Mice. Cancer Chemother Pharmacol. 1998;42(4):313-8.

其他信息
Therapeutic Uses
Aminopterin/ analogs & derivatives; Folic Acid Antagonists
Pralatrexate is indicated for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma (PTCL). This indication is based on overall response rate. Clinical benefit such as improvement in progression free survival or overall survival has not been demonstrated. /Included in US product label/
T-cell lymphomas (TCL) are characterized by poor response to chemotherapy and generally poor outcome. While molecular profiling has identified distinct biological subsets and therapeutic targets in B-cell lymphomas, the molecular characterization of TCL has been slower. Surface markers expressed on malignant T-cells, such as CD2, CD3, CD4, CD25, and CD52 were the first TCL-specific therapeutic targets to be discovered. However, the presence of these receptors on normal T-cells means that monoclonal antibody (mAb)- or immunotoxin (IT)-based therapy in TCL inevitably results in variable degrees of immunosuppression. Thus, although some mAbs/IT have significant activity in selected subsets of TCL, more specific agents that target signaling pathways preferentially activated in malignant T-cells are needed. One such novel class of agents is represented by the histone deacetylase (HDAC) inhibitors. These molecules selectively induce apoptosis in a variety of transformed cells, including malignant T-cells, both in vitro and in vivo. Several HDAC inhibitors have been studied in TCL with promising results, and have recently been approved for clinical use. Immunomodulatory drugs, such as interferons and Toll Receptor (TLR) agonists have significant clinical activity in TCL, and are particularly important in the treatment of primary cutaneous subtypes (CTCL). Although most classical cytotoxic drugs have limited efficacy against TCL, agents that inhibit purine and pyrimidine metabolism, known as nucleoside analogues, and novel antifolate drugs, such as pralatrexate, are highly active in TCL. With improved molecular profiling of TCL novel pharmacological agents with activity in TCL are now being discovered at an increasingly rapid pace. Clinical trials are in progress and these agents are being integrated in combination therapies for TCL, both in the relapsed/refractory setting as well as front line.
Drug Warnings
FOLOTYN can suppress bone marrow function, manifested by thrombocytopenia, neutropenia, and anemia. Dose modifications are based on ANC and platelet count prior to each dose.
Treatment with FOLOTYN may cause mucositis. If /greater than or equal to/ Grade 2 mucositis is observed, dose should be modified.
Patients should be instructed to take folic acid and receive vitamin B12 to potentially reduce treatment-related hematological toxicity and mucositis. ... Patients should take low-dose oral folic acid on a daily basis. Folic acid should be initiated during the 10-day period preceding the first dose of FOLOTYN, and dosing should continue during the full course of therapy and for 30 days after the last dose of FOLOTYN. Patients should also receive a vitamin B12 intramuscular injection no more than 10 weeks prior to the first dose of FOLOTYN and every 8-10 weeks thereafter. Subsequent vitamin B12 injections may be given the same day as treatment with FOLOTYN.
Although FOLOTYN has not been formally tested in patients with renal impairment, caution is advised when administering FOLOTYN to patients with moderate to severe impairment. Monitor patients for renal function and systemic toxicity due to increased drug exposure.
For more Drug Warnings (Complete) data for Pralatrexate (10 total), please visit the HSDB record page.
Pharmacodynamics
Pralatrexate is a folate analog that inhibits folate metabolism, thus impeding the synthesis of amino acids and nucleic acid. Additionally, pralatrexate also competes for enzymatic processing by folyopolyglutamate synthase (FPGS)with folate to increase cellular retention. Compared to methotrexate, pralatrexate binds to the reduced folate carrier protein-1 (RFC-1) for cellular uptake with 10-times the affinity and is a more potent substrate for FPGS. The Km value for RFC-1 was calculated to be 0.3 μmol/L and 4.8 μmol/L for pralatrexate and methotrexate respectively, while the Km value for FPGS was estimated to be 5.9 and 32.3 µmol/l for pralatrexate and methotrexate respectively. As a result, pralatrexate is more cytotoxic and better retained in cancer cells. Due to its anti-folate activity, pralatrexate's main toxicity is manifested as mucositis that can require dose interruption or reduction. In 5 patients with non-small-cell lung carcinoma receiving a supratherapeutic dose of 230 mg/m2, the mean change from pre-injection QTcF interval at the end of infusion was 6.1 ms (90%CI: -0.6, 12.7), and at 1-hour post-injection was 7.8 ms (90%CI: 3.0, 12.6). However, no patient exceeded a QTcF of 470 msec and exhibited an absolute increase from baseline in QTcF exceeding 30 msec. As well, the study dose far exceeded the target dose for patients with peripheral T-cell lymphoma and pralatrexate does not inhibit the human ether-a-go-go-related gene (hERG) K+ channel. Therefore, pralatrexate uses are unlikely to cause cardiac repolarization delays..
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C23H23N7O5
分子量
477.47
精确质量
477.176
CAS号
146464-95-1
相关CAS号
(R)-Pralatrexate;1320211-70-8
PubChem CID
148121
外观&性状
Light yellow to yellow solid powder
密度
1.5±0.1 g/cm3
熔点
215 °C(dec.)
折射率
1.704
LogP
0.23
tPSA
207.3
氢键供体(HBD)数目
5
氢键受体(HBA)数目
11
可旋转键数目(RBC)
10
重原子数目
35
分子复杂度/Complexity
809
定义原子立体中心数目
1
SMILES
C#CCC(CC1=CN=C2C(=N1)C(=NC(=N2)N)N)C3=CC=C(C=C3)C(=O)N[C@@H](CCC(=O)O)C(=O)O
InChi Key
OGSBUKJUDHAQEA-WMCAAGNKSA-N
InChi Code
InChI=1S/C23H23N7O5/c1-2-3-14(10-15-11-26-20-18(27-15)19(24)29-23(25)30-20)12-4-6-13(7-5-12)21(33)28-16(22(34)35)8-9-17(31)32/h1,4-7,11,14,16H,3,8-10H2,(H,28,33)(H,31,32)(H,34,35)(H4,24,25,26,29,30)/t14?,16-/m0/s1
化学名
N -(4-{1-[(2,4-diaminopteridin-6-yl)methyl]but-3-yn-1-yl}benzoyl)-L-glutamic acid
别名
PDX; Pralatrexate; 10-Propargyl-10-deazaaminopterin; trade name: Folotyn.
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 28 mg/mL (58.6 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0944 mL 10.4719 mL 20.9437 mL
5 mM 0.4189 mL 2.0944 mL 4.1887 mL
10 mM 0.2094 mL 1.0472 mL 2.0944 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02594267 Completed Drug: Pralatrexate Injection Peripheral T-Cell Lymphoma (PTCL) Acrotech Biopharma Inc. November 10, 2015 Phase 1
NCT03355768 Withdrawn Drug: Romidepsin
Drug: Pralatrexate
Lymphoma, T-Cell, Peripheral Jennifer Amengual September 1, 2018 Phase 3
NCT03598998 Active, not recruiting Biological: Pembrolizumab
Drug: Pralatrexate
Anaplastic Large Cell Lymphoma
Nodal Peripheral T-Cell Lymphoma
With TFH Phenotype
City of Hope Medical Center February 4, 2019 Phase 1
Phase 2
NCT03240211 Recruiting Drug: Pembrolizumab
Drug: Pralatrexate
PTCL
CTCL
University of Virginia February 2, 2022 Phase 1
生物数据图片
  • Pralatrexate
    A short-term uptake of radiolabeled antifolates in NCI-H460 cells Drugs were dosed for 15 or 60 min. White bars cells incubated with radiolabeled drug only, black bars cells incubated with radiolabeled drug plus excess unlabeled drug.Cancer Chemother Pharmacol.2009 Oct;64(5):993-9.
  • Pralatrexate
    Differential activity of the antifolates on tumor volume and body weight in NCI-H460 and MV522 human tumor xenografts.Cancer Chemother Pharmacol.2009 Oct;64(5):993-9.
  • Pralatrexate
    Inhibition of DHFR activity by pralatrexate in a cell-free system.Cancer Chemother Pharmacol.2009 Oct;64(5):993-9.
相关产品
联系我们