1,3-Butanediol

别名: 1,3-丁二醇;1,3-二羟基丁烷;(±)-1,3-丁二醇;1,3-丁二醇(工业级);1.3-丁二醇;1,3-丁二醇[生物学研究用];1,3-Butanediol 1,3-丁二醇;1,3-Butanediol [for Biochemical Research] 1,3-丁二醇[生物学研究用];1,3丁二醇;1,3-丁二醇 1,3-Butanediol;1,3-丁二醇 化学试剂;1,3-丁二醇,分析标准品
目录号: V72305 纯度: ≥98%
1,3-丁二醇是一种乙醇二聚体,为人类营养提供热量来源。
1,3-Butanediol CAS号: 107-88-0
产品类别: Endogenous Metabolite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25g
Other Sizes

Other Forms of 1,3-Butanediol:

  • (R)-(-)-1,3-丁二醇
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
1,3-丁二醇是一种乙醇二聚体,为人类营养提供热量来源。 1,3-丁二醇在体内转化为β-羟基丁酸酯,具有脑保护和降血糖作用。
生物活性&实验参考方法
药代性质 (ADME/PK)
Metabolism / Metabolites
Butanediol is metabolized by the liver... beta-hydroxybutyric acid /a main metabolite/ is further metabolized in the tricarboxylic acid cycle to carbon dioxide, which accounts for about 90% of the dose administered. In other studies... in which rats were fed 1,3-butanediol for 3 to 7 weeks, it was found that the blood level of beta-hydroxybutyrate, was also higher than normal.
R- and S-1,3-butylene glycol are taken up by the isolated liver of fed or starved rats at the same rate. R-1,3-butylene glycol is mainly transformed to the physiological ketone bodies R-3-hydroxybutyrate and acetoacetate. Only 29-38&% of the S-enantiomer are converted into physiological ketone bodies. The S-enantiomer is further metabolised to S-3-hydroxybutyrate (not a natural compound), lipids and carbon dioxide. Based on these results it can be concluded that the test item is metabolised via physiological pathways, suggesting that it has a low potential to accumulate.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
IDENTIFICATION AND USE: 1,3-Butanediol is an odorless, colorless, viscous liquid with a sweet flavor and bitter aftertaste. It is used as an intermediate in manufacture of polyester plasticizers; humectant for cellophane, tobacco; and in the cosmetic and pharmaceutical industry as a glycerin substitute.1,3-Butanediol also has some mold inhibiting action. It is not registered for current pesticide use in the U.S., but approved pesticide uses may change periodically and so federal, state and local authorities must be consulted for currently approved uses. HUMAN EXPOSURE AND TOXICITY: 1,3-Butanediol is not irritating to human skin or mucous membranes. When applied to the human eye it causes immediate severe stinging, but irrigation with water brings rapid complete relief. ANIMAL STUDIES: Eye irritation occurred in one individual, although its irritant potency in rabbits appeared low. It was of low acute oral toxicity to rodents. No treatment-related effects on mortality, body weight gain, organ weights, hematology, histopathology or neoplastic changes were observed in rats fed 1,3-butanediol in the diet at 1, 3 or 10% (~ 643, 1960 or 6230 mg/kg-bw/day for males or ~ 844, 2330 or 7300 mg/kg-bw/day for females) for two years. Feeding studies in which 1,3-butylene glycol replaced carbohydrate as an energy source found central nervous system effects in rats, dogs and calves. 1,3-Butanediol decreased glucose and increased beta-hydroxybutyrate in lactating goats fed 1,3-butanediol in their diets.1,3-Butylene glycol was fetotoxic when fed to rats during pregnancy, and a multigeneration feeding study in rats gave some indication of reduced male fertility. No genotoxic activity (dominant lethality or chromosomal damage) was seen in rats treated orally.
Interactions
1,3-Butanediol and phlorhizin were used to induce ketonemia and hypoglycemia in steers. Oral administration of butanediol increased blood beta-hydroxybutyrate (BHB) and plasma nonesterified fatty acids (NEFA) and decreased serum glucose. Subcutaneous injections of phlorhizin, given in addition to butanediol orally, further increased NEFA and BHB concentrations and decreased glucose. Dietary niacin supplementation of steers given phlorhizin and butanediol caused serum glucose concentration to increase and blood BHB and plasma NEFA concentrations to decrease.
Evidence previously reported suggest that 1,3-butanediol (BD) enhances the hepatotoxic effect of a single small dose of carbon tetrachloride (CCl4) in a dose-related manner. The present study provides additional information concerning the quantitative relationship between the severity of the ketotic state produced by BD and the magnitude of the potentiation observed and emphasizes the use of ketone bodies (KB) to predict the potential hazard of the BD-CCl4 interaction. Liver damage was modulated in male Sprague-Dawley rats by varying the concentration of the BD solutions ingested prior to a CCl4 challenge (0.1 ml/kg, i.p.). These data were compared to ketone bodies in plasma, hepatic tissue and urine. BD produced a dose-dependent metabolic ketosis observable at dosages between 1.1 and 9.9 g/kg per day given for 7 days. Plasma and liver data correlated well together. Concomitantly, potentiation of the CCl4-induced liver injury was also dose-related for the same dosage range; the minimum effective dosage of BD for potentiation was estimated as 1.1 g/kg per day. The linear correlations between hepatic or plasma KB values and the indices of hepatic dysfunction (ALT, OCT) were highly significant. Using a semiquantitative method, a correlation was also found for the urinary KB data. These results suggest that plasma KB concentrations might be useful for predicting possible potentiation of the hepatonecrotic effect of CCl4 by BD.
For 28 days, four steers received l,3-butanediol, which causes ketonemia, and phlorizin, which causes glucosuria. Steers also were fasted for 9 days. Effects of treatments on concentrations of metabolites in blood and liver and on kinetics of glucose metabolism were determined. Treatments were: control, control with dietary butanediol plus injected phlorizin, and fasting. Fasting caused hypoinsulinemia and decreased liver glycogen by 60%. Butanediol plus phlorizin and fasting caused 18% and 19% decreases of plasma glucose and 2.5- and 6-fold increses of free fatty acid concentrations in blood plasma. Glucose irreversible loss averaged 371, 541, and 182 g/day during control, butanediol plus phlorizin treatment, and fasting. Butanediol plus phlorizin increased-liver ketone body concentrations, caused glucosuria, ketonuria, and ketonemia, but did not affect insulin, glucagon, or growth hormone concentrations in plasma or triglyceride and glycogen contents in liver. Steers given butane plus phlorizin did not show all the usual signs of lactation ketosis, but the treatment still offers promise for studying causes and effects of ketosis.
Rats maintained on 1,3-butanediol exhibit potentiated cholestatic responses to taurolithocholate or manganese-bilirubin injections; with alpha-naphthylisothiocyanate, the hyperbilirubinemia is enhanced but not the depression in bile flow.
Non-Human Toxicity Values
LD50 Rat oral 22800 mg/kg.
LD50 Mice sc 16.5 mL/kg
LD50 Rat sc 20.1 mL/kg
LD50 Guinea pig oral 11 g/kg
For more Non-Human Toxicity Values (Complete) data for 1,3-BUTANEDIOL (6 total), please visit the HSDB record page.
参考文献

[1]. Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study. J Cereb Blood Flow Metab. 1987 Dec;7(6):794-800.

[2]. Nutritional and metabolic studies in humans with 1,3-butanediol. Fed Proc. 1975 Nov;34(12):2171-6.

其他信息
Butane-1,3-diol is a butanediol compound having two hydroxy groups in the 1- and 3-positions. It is a butanediol and a glycol.
1,3-Butanediol is found in pepper (c. annuum). 1,3-Butanediol is a solvent for flavouring agents 1,3-Butanediol is an organic chemical, an alcohol. It is commonly used as a solvent for food flavouring agents and is a co-monomer used in certain polyurethane and polyester resins. It is one of four stable isomers of butanediol. In biology, 1,3-butanediol is used as a hypoglycaemic agent. 1,3-Butanediol belongs to the family of Secondary Alcohols. These are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R') (R,R'=alkyl, aryl).
See also: Avobenzone; butylene glycol (component of) ... View More ...
Therapeutic Uses
/EXP THER/ This study examined the effect of 1,3-butanediol on the selective loss of CA1 pyramidal neurons following a short period of near-complete forebrain ischemia. Injection of 55 mmol 1,3-butanediol/kg body weight at 24 h of recirculation and again at 36 hr following 10 min of forebrain ischemia markedly reduced damage to CA1 neurons examined at 72 hr of recirculation compared with that in saline-treated rats. Comparable treatment with ethanol did not cause significant protection. Neuronal loss was also not reduced by 1,3-butanediol treatment when the ischemic period was extended to 15 min or by single treatments at 24 hr or 36 hr following 10 min of ischemia. However, a single treatment 5 min after reversal of 10 min of ischemia was effective in ameliorating cell loss. The difference in effectiveness of 1,3-butanediol following 10 min and 15 min of ischemia is consistent with a number of previous studies, indicating that the processes leading to loss of CA1 neurons are modified when the ischemic period is extended. Previous findings that 1,3-butanediol reduced damage in other ischemia-susceptible neuronal subpopulations but not in CA1 neurons most likely reflected the longer period of ischemia which was used. The results of the present investigation demonstrate that administration of 1,3-butanediol offers a novel approach for interfering with post-ischemic loss of CA1 neurons following a brief ischemic period which is effective even when initiated after prolonged recirculation periods.
/EXP THER/ The biochemical effect of S-1,3-butanediol on streptozotocin induced diabetic rats was studied. Rats were made diabetic by the intraperitoneal injection of 40 mg/kg body weight streptozotocin in sodium citrate buffer. A dosage of 25 mmol/kg body weight of S-1,3-butanediol was injected intraperitoneally for treatment. The streptozotocin induced diabetic rats showed a marked increase in blood glucose level, and significant increase in the level of cholesterol, triglycerides and free fatty acids. The glycogen levels in liver and kidney were greatly decreased in diabetic rats. Treatment with butanediol normalized the glucose and glycogen level but had no significant effect on protein and lipid levels.
/EXP THER/ We previously showed that intrastriatal administration of aminooxyacetic acid (AOAA) produces striatal lesions by a secondary excitotoxic mechanism associated with impairment of oxidative phosphorylation. In the present study, we show that and the specific complex I inhibitor rotenone produces a similar neurochemical profile in the striatum, consistent with an effect of AOAA on energy metabolism. Lesions produced by AOAA were dose-dependently blocked by MK-801, with complete protection against GABA and substance P depletions at a dose of 3 mg/kg. AOAA lesions were significantly attenuated by pretreatment with either 1,3-butanediol or coenzyme Q10, two compounds which are thought to improve energy metabolism. These results provide further evidence that AOAA produces striatal excitotoxic lesions as a consequence of energy depletion and they suggest therapeutic strategies which may be useful in neurodegenerative diseases.
/EXP THER/ In order to assess the therapeutic value of 1,3 butanediol in ethylene glycol toxicosis, mixed-bred dogs were given an oral dose of commercial antifreeze at 6 mL/kg of body weight (0 hour) and treated (IV) 7 times at 6-hour intervals with 5.5 mL/kg of body weight 1,3 butanediol solution (20% in physiological saline solution) beginning at 8, 12, and 21 hours. Serum glycolic acid concentration was quantitated by high-pressure liquid chromatography. Three dogs that were given ethylene glycol, but no 1,3 butanediol treatment, died with elevated serum glycolic acid concentrations. Five dogs were given ethylene glycol and 1,3 butanediol treatment. Of 2 dogs treated at 8 hours, 1 survived and 1 died at 39 hours; 1 treated at 12 hours and 1 treated at 21 hours survived; 1 dog died soon (27 hours) after treatment was initiated at 21 hours. Four of the 5 dogs had dramatically decreased serum glycolic acid concentrations after 1,3 butanediol treatment, indicating its effectiveness in inhibiting alcohol dehydrogenase-dependent glycolic acid formation in vivo.
/EXP THER/ Pre-partum feeding of 1,3-butanediol to sows has been shown to improve the metabolic status and survival rate of neonatal pigs. To evaluate the efficacy of short-term, pre-partum feeding of 1,3-butanediol on pig and sow productivity on a large scale and low concentration was the focus of the research. The secondary objective was to determine if pre-partum feeding of 1,3-butanediol had any effect on survival rate and weight gain of lesser body weight pigs, sow body weight and subsequent sow reproductive performance. In a large commercial unit, 2537 sows were fed one of two pre-partum diets (0% or 4.55% 1,3-butanediol) on Day 108+/-3 of pregnancy. 1,3-butanediol provided 8% of the total metabolizable energy. Pigs born live in those litters were equalized by cross-fostering among sows receiving the same pre-partum diet. Pigs were weaned from the sows at 16+/-3 days post-partum and return of sows to estrus and conception rates were determined. Pre-partum feeding of 1,3-butanediol reduced (P=0.01) pre-weaning pig mortalities from 1.44 to 1.24 pigs per litter. The reduction in pig mortality was independent of length of 1,3-butanediol feeding (4 to 11 days). In a subset of 750 litters, four lesser birth-weight pigs from each litter were tagged and monitored to determine the effect of 1,3-butanediol on survival rates and pre-weaning weight gain of pigs with the greatest mortality risk. 1,3-butanediol reduced (P=0.01) pre-weaning mortality of these low birth weight pigs by 5.27%. Based on these data, short-term pre-partum feeding of 1,3-butanediol effectively improves pre-weaning pig productivity at a lower concentration than previously reported.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C4H10O2
分子量
90.12
精确质量
90.068
CAS号
107-88-0
相关CAS号
(R)-(-)-1,3-Butanediol;6290-03-5
PubChem CID
7896
外观&性状
Viscous liquid
Pure compound is colorless
密度
1.0±0.1 g/cm3
沸点
207.0±0.0 °C at 760 mmHg
熔点
-54ºC
闪点
121.1±0.0 °C
蒸汽压
0.1±0.8 mmHg at 25°C
折射率
1.438
LogP
-0.69
tPSA
40.46
氢键供体(HBD)数目
2
氢键受体(HBA)数目
2
可旋转键数目(RBC)
2
重原子数目
6
分子复杂度/Complexity
28.7
定义原子立体中心数目
0
SMILES
O([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])O[H]
InChi Key
PUPZLCDOIYMWBV-UHFFFAOYSA-N
InChi Code
InChI=1S/C4H10O2/c1-4(6)2-3-5/h4-6H,2-3H2,1H3
化学名
butane-1,3-diol
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O: ≥ 500 mg/mL (5548.16 mM)
DMSO: 100 mg/mL (1109.63 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (27.74 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (27.74 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 悬浮液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

View More

配方 3 中的溶解度: ≥ 1.72 mg/mL (19.09 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 17.2 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 11.0963 mL 55.4816 mL 110.9632 mL
5 mM 2.2193 mL 11.0963 mL 22.1926 mL
10 mM 1.1096 mL 5.5482 mL 11.0963 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们