Psoralidin

别名: 补骨脂定; 补骨脂次素; 补骨脂酮
目录号: V8420 纯度: ≥98%
Psoralidin 是 COX-2 和 5-LOX 的双重(双功能)抑制剂。
Psoralidin CAS号: 18642-23-4
产品类别: New12
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
Psoralidin 是 COX-2 和 5-LOX 的双重(双功能)抑制剂。具有抗癌、抗菌、抗炎作用。 Psoralidin 显着下调 NOTCH1 信号传导。补骨脂素还能强烈诱导 ROS 的产生。
生物活性&实验参考方法
体外研究 (In Vitro)
补骨脂素治疗(10、15、20 和 25 μM;24 小时)对透明乳腺癌细胞 (BCC) 群体(ALDH-细胞、ALDH+细胞和商业 BSCS)敏感,IC50 范围为 18 至 21 μM。另一方面,用补骨脂素(30 μM;24 小时)处理的 MCF-12A 细胞能够显着诱导 ALDH- 细胞、ALDH+ 细胞和商业 BCSC[2]。补骨脂素对治疗 AIDS 中 ALDH- 和 ALDH+ 细胞的作用 [2]
体内研究 (In Vivo)
补骨脂素 (5 mg/kg) 通过改变在炎症中至关重要的促炎细胞因子的表达来减少 BALB/c 红外线照射肺部的炎症 [1]。
细胞实验
细胞活力测定 [2]
细胞类型: ALDH- 细胞、ALDH+ 细胞、商业乳腺癌干细胞 (BSCS) 和正常乳腺上皮细胞 (MCF-12A)
测试浓度:10、15、50 和 25.μM
孵育持续时间:24 小时
实验结果: ALDH- 细胞、ALDH+ 细胞、商业 BCSC 的 IC50 为 18 至 21 μM。

细胞凋亡分析 [2]
细胞类型: ALDH- 细胞、ALDH+ 细胞和商业 BCSC
测试浓度: 20 和 30 μM
孵育时间:24小时
实验结果:20 μM处理死亡诱导后,所有三种细胞类型均未观察到明显的凋亡。然而,在 30 μMin 时,ALDH- 细胞、ALDH+ 细胞和商业 BCSC 的凋亡率分别为 53.60%、44.1% 和 45.9%。
动物实验
Animal/Disease Models: balb/c (Bagg ALBino) mouse[1]
Doses: 5 mg/kg
Route of Administration: intraperitoneal (ip) injection; 30 minutes before and 1 hour after IR irradiation (20 Gy).
Experimental Results: Anti-inflammatory effects on mice irradiated with infrared rays.
参考文献

[1]. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Biochem Pharmacol. 2011 Sep 1;82(5):524-34.

[2]. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells.Br J Cancer. 2013 Nov 12;109(10):2587-96.

其他信息
Psoralidin is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an estrogen receptor agonist. It is a member of coumestans, a polyphenol and a delta-lactone. It is functionally related to a coumestan.
Psoralidin has been reported in Phaseolus lunatus, Dolichos trilobus, and other organisms with data available.
See also: Cullen corylifolium fruit (part of).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C20H16O5
分子量
336.34
精确质量
336.099
CAS号
18642-23-4
PubChem CID
5281806
外观&性状
White to off-white solid powder
密度
1.4±0.1 g/cm3
沸点
458.8±34.0 °C at 760 mmHg
熔点
290-292°
闪点
231.3±25.7 °C
蒸汽压
0.0±1.2 mmHg at 25°C
折射率
1.689
LogP
5.03
tPSA
83.81
氢键供体(HBD)数目
2
氢键受体(HBA)数目
5
可旋转键数目(RBC)
2
重原子数目
25
分子复杂度/Complexity
554
定义原子立体中心数目
0
SMILES
O1C2C([H])=C(C([H])=C([H])C=2C2C(=O)OC3C([H])=C(C(C([H])([H])/C(/[H])=C(\C([H])([H])[H])/C([H])([H])[H])=C([H])C=3C1=2)O[H])O[H]
InChi Key
YABIJLLNNFURIJ-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H16O5/c1-10(2)3-4-11-7-14-17(9-15(11)22)25-20(23)18-13-6-5-12(21)8-16(13)24-19(14)18/h3,5-9,21-22H,4H2,1-2H3
化学名
3,9-dihydroxy-2-(3-methylbut-2-enyl)-[1]benzofuro[3,2-c]chromen-6-one
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~50 mg/mL (~148.66 mM)
溶解度 (体内实验)
配方 1 中的溶解度: 2.08 mg/mL (6.18 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (6.18 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.9732 mL 14.8659 mL 29.7318 mL
5 mM 0.5946 mL 2.9732 mL 5.9464 mL
10 mM 0.2973 mL 1.4866 mL 2.9732 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • Psoralidin inhibits cell growth, mammosphere formation and induces apoptosis in BC and BCSCs. (A) ALDH− cells, ALDH+ cells, commercial BCSCs, and normal breast epithelial cells (MCF-12A) were treated with vehicle (DMSO) or the indicated dose of Pso for 24 h. Cell viability was determined using a trypan blue exclusion assay. Data are expressed as mean±s.e.m. of two independent experiments done in triplicates. (B) Anchorage-independent growth of ALDH− and ALDH+ cells was determined by assessing the colony-forming ability of these cells. Approximately, 5 × 103 cells were treated with Pso at the IC50 value specific to the cell type. Cells were monitored for 10 days, and colonies were stained with crystal violet and counted manually. Data are expressed as mean±s.e.m. of three independent experiments. (C) A mammosphere assay was performed using 4 × 103 cells (ALDH− and ALDH+ cells) on ultra-low attachment plates. Cells were treated with IC50 dose of Pso and allowed to grow for 2 weeks followed by counting of mammospheres. Data are expressed as mean±s.e.m. of two independent experiments. (D) To assess apoptosis induced by Pso, ALDH− cells, ALDH+ cells, and commercial BCSCs were treated with Pso for 24 h. Cells were stained with FITC-Annexin-V and propidium iodide and analyzed by flow cytometery. Data are expressed as mean±s.e.m. of three independent experiments. Student's t-test was used to calculate statistical significance. *P<0.05, **P<0.005, and ***P<0.0001. The full colour version of this figure is available at British Journal of Cancer online.[2]. Suman S, et al. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells.Br J Cancer. 2013 Nov 12;109(10):2587-96.
  • Psoralidin inhibits NOTCH1 signaling and EMT in ALDH− and ALDH+ cells. (A) ALDH− and ALDH+ cells were treated with vehicle or the IC50 dose of Pso. Total cell lysates were prepared, and equal amounts of protein were subjected to western blot analysis for NOTCH1, HES1, and actin proteins. (B) Total protein lysates were utilized for western blot analysis to determine the expression of the EMT markers E-cadherin, β-catenin, and vimentin. Actin was used as a loading control. (C) E-cadherin, and (D) β-catenin expression and localization were visualized by confocal microscopy in vehicle- and Pso-treated ALDH− and ALDH+ cells.[2]. Suman S, et al. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells.Br J Cancer. 2013 Nov 12;109(10):2587-96.
  • Psoralidin inhibits migration and invasion in BCCs and BCSCs. (A) ALDH− cells, ALDH+ cells, and commercial BCSCs were plated in six-well plates and grown until confluent. A uniform wound was created in the center of the monolayer. The wound gap was photographed in a Biostation CT programmed to take pictures every 2 h. The distance between the edges of wound was measured in μm using NIS-Element software, and statistical analysis was performed. Data are expressed as mean±s.e.m. of two independent experiments. (B) A transwell invasion assay was performed with ALDH− cells, ALDH+ cells, and commercial BCSCs using Boyden chambers. The cells were treated with vehicle or the IC50 dose of Pso and allowed to migrate towards the lower chamber. The invasive cells were stained with crystal violet and counted. Data are expressed as mean±s.e.m. of three independent experiments. Student's t-test was used to calculate statistical significance. *P<0.05, **P<0.005, and ***P<0.0001.[2]. Suman S, et al. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells.Br J Cancer. 2013 Nov 12;109(10):2587-96.
联系我们