Pyrogallol

别名: 2,3-Dihydroxyphenol Benzene-1,2,3-triolPyrogallol C.I. 76515 NSC 5035Fouramine Brown AP 1,2,3-苯三酚;焦性没食子酸;焦倍酸;焦倍酚;焦棓酚; 焦棓酸; 1,2,3-三羟基苯; Pyrogallol 焦棓酸;焦棓酸(P);焦性没食子酸,AR;焦性没食子酸,CP;焦性没食子酸,GR;连苯三酚;邻苯三酚;五倍子酚;1,2,3-三苯酚;碱性焦性没食子酸试液(药典),Pyrogallol;焦性没食子酸红; 邻苯三酚红; 1,2,3-苯三酚(焦性没食子酸);焦酚;沒食子酚;1,2,3-三羟基苯/邻苯三酚
目录号: V7824 纯度: ≥98%
连苯三酚是一种多酚化合物,具有抗真菌和抗牛皮癣特性。
Pyrogallol CAS号: 87-66-1
产品类别: ROS
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
500mg
1g
2g
5g
10g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
连苯三酚是一种多酚化合物,具有抗真菌和抗牛皮癣特性。连苯三酚是一种能够产生自由基,特别是超氧阴离子的还原剂。
生物活性&实验参考方法
体外研究 (In Vitro)
连苯三酚 (PG) 是一种还原剂,经常用作照相显影剂和染发剂行业,因为它可能产生自由基,特别是超氧阴离子 (O2•-)。 Pyrogallol 通过消耗谷胱甘肽 (GSH) 并诱导细胞凋亡来抑制 Calu-6 和 A549 肺癌细胞的发育。连苯三酚 (PG) 会影响丝裂原激活蛋白激酶 (MAPK) 并导致肺癌细胞过量产生 O2•-,进而导致细胞凋亡 [1]。研究了连苯三酚对坏死细胞死亡和人肺成纤维细胞(HPF)存活的影响。在这些研究中,使用 0、50 或 100 µM 连苯三酚测定有或没有特定 MAPK 抑制剂时细胞活力的抑制或死亡水平。 24 小时后,用 50 µM 和 100 µM 邻苯三酚处理可使 HPF 活性分别降低约 40% 和 65%。用 MEK 抑制剂处理略微增加,用 p38 抑制剂处理稍微减少,用 50 µM 连苯三酚处理的 HPF 细胞中细胞活力的抑制。所有MAPK抑制剂都在一定程度上改善了100 µM连苯三酚处理的HPF细胞的活力抑制;单独使用 p38 抑制剂处理可增加 HPF 对照细胞的活力。细胞释放的乳酸脱氢酶(LDH)用于测量坏死细胞死亡。虽然 HPF 细胞的 LDH 释放不受 50 µM 连苯三酚处理的影响,但通过 100 µM 连苯三酚处理却显着增加 [1]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
The substance can be absorbed into the body by ingestion.
Readily absorbed via skin.
...Readily absorbed from gastroenteric tract & from parenteral sites of injection. Little is absorbed through intact skin. ...readily conjugated with hexuronic, sulfuric, or other acids & excreted within 24 hr via kidneys. A fraction is excreted unchanged.
Metabolism / Metabolites
...Pyrogallol /is a metabolite of tannic acid...
With pyrogallol derivatives...the middle phenolic group is methylated, with catechol derivatives methylation may be meta or para, dependent on the other substituents present. Pyrogallol /is methylated by catechol o-methyl transferase to form/ 2-methyl pyrogallol.
Pyrogallol in rats yields 3-methoxycatechol & 2-methoxyresorcinol. In grass yields 2-methoxyresorcinol. /From table/
Pyrogallol in beef yields purpurogallin. In tea yields purpurogallin. /From table/
For more Metabolism/Metabolites (Complete) data for Pyrogallic acid (7 total), please visit the HSDB record page.
毒性/毒理 (Toxicokinetics/TK)
Interactions
... The involvement of various molecular events in pyrogallol-mediated hepatotoxicity was deciphered by differential mRNA transcription profiles of control and pyrogallol treated mice liver. The modulatory effects of silymarin on pyrogallol-induced differentially expressed transcripts were also looked into. Swiss albino mice were treated with or without pyrogallol. In some sets of experiments, mice were also treated with silymarin 2 hr prior to pyrogallol. Total RNA was isolated from liver and polyadenylated RNA was reverse-transcribed into Cye 3 or Cye 5 labeled cDNA. Equal amounts of labeled cDNA from two different groups were mixed and hybridized with mouse 15k array. The hybridized arrays were scanned, analyzed and the expression level of each transcript was calculated. The differential expression was validated by quantitative real time polymerase chain reaction. Comparative transcription pattern showed an alteration in the expression of 183 transcripts (150 up-regulated and 33 down-regulated) associated with oxidative stress, cell cycle, cytoskeletal network, cell-cell adhesion, extra-cellular matrix, inflammation, apoptosis, cell-signaling and intermediary metabolism in pyrogallol-exposed liver and silymarin pre-treatment modulated the expression of many of these transcripts. Results obtained thus suggest that pyrogallol induces multiple molecular events leading to hepatotoxicity and silymarin effectively counteracts pyrogallol-mediated alterations.
... /This/ study was undertaken to assess the effect of resveratrol against pyrogallol-induced changes in hepatic damage markers, xenobiotic metabolizing enzymes and oxidative stress. Swiss albino mice were treated intraperitoneally, daily with pyrogallol (40 mg/kg), for one to four weeks, along with respective controls. In some set of experiments, animals were pre-treated with resveratrol (10 mg/kg), 2 hr prior to pyrogallol treatment, along with respective controls. Alanine aminotransaminase, aspartate aminotransaminase and bilirubin were measured in blood plasma and mRNA expression of cytochrome P-450 (CYP) 1A1, CYP1A2, CYP2E1, glutathione-S-transferase (GST)-ya and GST-yc, catalytic activity of CYP1A1, CYP1A2, CYP2E1, GST, glutathione reductase and glutathione peroxidase, lipid peroxidation and reduced glutathione (GSH) level were measured in liver. Resveratrol reduced pyrogallol-mediated increase in alanine aminotransaminase, aspartate aminotransaminase, bilirubin, lipid peroxidation and mRNA expression and catalytic activity of CYP2E1 and CYP1A2. Pyrogallol-mediated decrease in GST-ya and GST-yc expressions, GST, glutathione peroxidase and glutathione reductase activities and GSH content was significantly attenuated in resveratrol co-treated animals. CYP1A1 expression and catalytic activity were not altered significantly in any treated groups. The results demonstrate that resveratrol modulates pyrogallol-induced changes in hepatic toxicity markers, xenobiotic metabolizing enzymes and oxidative stress.
The effect of a free radical generator pyrogallol on gastric emptying was studied in rats. Pyrogallol at doses of 25, 50, 100 and 150 mg/kg (ip) produced dose-dependent inhibition of gastric emptying. Pretreatment with vitamin C (100 and 500 mg/kg, p.o.), and vitamin E (100 and 500 mg/kg, po) significantly reversed the inhibition in gastric emptying caused by pyrogallol 100 mg/kg. However, the combination of vitamin C and vitamin E (100 mg/kg) produced synergistic effect. Glutathione (100 mg/kg iv) 5-min pretreatment also reversed the inhibition of gastric emptying caused by pyrogallol 100 mg/kg. Ondansetron (3 mg/kg, po) significantly reversed the pyrogallol effect. The effect of pyrogallol on malondialdehyde (MDA) levels and 5-HT levels in the stomach tissue was also studied. Pyrogallol at a dose of 100 mg/kg, i.p., significantly increased MDA levels and 5-HT levels in the stomach. Pretreatment with a combination of vitamin C and vitamin E (100 mg/kg, p.o.) and glutathione (100 mg/kg, i.v.) significantly ameliorated the rise in stomach tissue MDA caused by pyrogallol but had no significant effect on the rise in 5-HT levels caused by pyrogallol. The effect of different doses of 5-HT on gastric emptying was also studied. 5-HT had a differential effect on gastric emptying. The low and high doses (0.1, 0.3 and 30 mg/kg, ip) significantly inhibited the gastric emptying while doses ranging from 1 to 10 mg/kg, i.p., had no significant effect on the gastric emptying. The pretreatment with antioxidants, combination of vitamin C and vitamin E (100 mg/kg each, p.o.) and glutathione (100 mg/kg, i. v.) had no effect on the 5-HT (0.3 mg/kg, ip)-induced delay in gastric emptying. The result indicate the role of free radicals in gastric emptying, and antioxidants may be of potential therapeutic value in disease conditions where free radicals are known to be released and the gastrointestinal effects are observed as symptoms or side effects of drug therapy.
This study was designed (i) to test the hypothesis that the endothelium-derived hyperpolarizing factor (EDHF) component of ACh-induced vasorelaxation and hyperpolarization of smooth muscle cells (SMCs) are impaired following exposure to superoxide anion, and (ii) to further investigate whether luteolin and apigenin induce vasoprotection at the vasoactive concentrations in rat mesenteric artery. Rat mesenteric arterial rings were isolated for isometric force recording and electrophysiological studies. Perfusion pressure of mesenteric arterial bed was measured and visualization of superoxide production was detected with fluorescent dye. 300 microM pyrogallol significantly decreased the relaxation and hyperpolarization to ACh. Luteolin and apigenin both induced vasoprotection against loss of the EDHF component of ACh-induced relaxation and attenuated the impairment of hyperpolarization to ACh. Oxidative fluorescent microtopography showed that either luteolin or apigenin significantly reduced the superoxide levels. The results suggest that superoxide anion impairs ACh-induced relaxation and hyperpolarization of SMC in resistance arteries through the impairment of EDHF mediated responses. Luteolin and apigenin protect resistance arteries from injury, implying that they may be effective in therapy for vascular diseases associated with oxidative stress.
For more Interactions (Complete) data for Pyrogallic acid (8 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Mouse oral 300 mg/kg
LD50 Mouse ip 400 mg/kg
LD50 Mouse sc 566 mg/kg
LD50 Rabbit oral 1600 mg/kg
参考文献

[1]. MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O2•- levels. Oncol Lett. 2017 Jul;14(1):1179-1185.

其他信息
Therapeutic Uses
/Experimental Therapy/ ... Pyrogallol had highly cytotoxic effect on human lung cancer cell lines and less effect on human bronchial epithelium cell line. This study was performed to investigate the beneficial effect of pyrogallol on human lung cancer cell lines - H441 (lung adenocarcinoma) and H520 (lung squamous cell carcinoma). The MTT (cytotoxic) data showed the inhibition growth of lung cancer cells followed pyrogallol treatment. The cell cycle of lung cancer cells was arrested in G2/M phase using flow cytometry. Using Western blot analysis, the cell cycle related proteins - cyclin B1 and Cdc25c were decreased in a time-dependent manner and the phosphorylated Cdc2 (Thr14) was increased within 4h pyrogallol treatment. Moreover, the higher cleavage of poly (ADP)-ribose polymerase (PARP), the increased of Bax concurrent with the decreased of Bcl-2 indicated that pyrogallol treatment resulted in apoptosis of lung cancer cells. The cell apoptosis was also directly demonstrated using Annexin V-FITC and TUNEL stain. Additionally, the tumoricidal effect of pyrogallol was measured using a xenograft nude mice model. After 5 weeks of pyrogallol treatment could cause the regression of tumor. Taking in vitro and in vivo studies together, these results suggest that pyrogallol can be developed as a promising anti-lung cancer drug particular for the non-small cell lung cancer (NSCLC).
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C6H6O3
分子量
126.111
精确质量
126.031
CAS号
87-66-1
相关CAS号
30813-84-4
PubChem CID
1057
外观&性状
White to off-white solid powder
密度
1.453
沸点
309 ºC
熔点
131-135 ºC
闪点
164.3±16.9 °C
蒸汽压
0.0±0.6 mmHg at 25°C
折射率
1.677
LogP
0.29
tPSA
60.69
氢键供体(HBD)数目
3
氢键受体(HBA)数目
3
可旋转键数目(RBC)
0
重原子数目
9
分子复杂度/Complexity
84.3
定义原子立体中心数目
0
SMILES
OC1C(O)=C(O)C=CC=1
InChi Key
WQGWDDDVZFFDIG-UHFFFAOYSA-N
InChi Code
InChI=1S/C6H6O3/c7-4-2-1-3-5(8)6(4)9/h1-3,7-9H
化学名
benzene-1,2,3-triol
别名
2,3-Dihydroxyphenol Benzene-1,2,3-triolPyrogallol C.I. 76515 NSC 5035Fouramine Brown AP
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ≥ 100 mg/mL (~792.96 mM)
H2O : ~50 mg/mL (~396.48 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (19.82 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (19.82 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (19.82 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 130 mg/mL (1030.85 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 7.9296 mL 39.6479 mL 79.2959 mL
5 mM 1.5859 mL 7.9296 mL 15.8592 mL
10 mM 0.7930 mL 3.9648 mL 7.9296 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01523327 UNKNOWN STATUS Other: measuring protein creatinin ratio,serum uric acid Uric Acid and Hypertension in Pregnancy Ain Shams Maternity Hospital 2011-10
NCT02947594 COMPLETED Liver Disease Università Politecnica delle Marche 2014-01
NCT03620227 COMPLETED Other: Exercise
Dietary Supplement: Beetroot juice
Dietary Supplement: Placebo
Hypertension
Menopause
Federal University of Uberlandia 2018-02-01 Not Applicable
NCT03531034 COMPLETED Other: Combined Exercise Training Blood Pressure, High
Exercise
Menopause
Federal University of Uberlandia 2014-03-01 Not Applicable
NCT03008785 COMPLETED Other: exercise
Other: isoflavone
Other: Placebo
Bloodpressure Federal University of Uberlandia 2015-02 Not Applicable
生物数据图片
  • Effects of mitogen-activated protein kinase inhibitors on cell viability and necrotic cell death in PG-treated HPF cells. (A) Alterations in HPF cell viability were assessed using MTT assays. (B) Alterations in LDH release from the HPF cells. *P<0.05 vs. control group. #P<0.05 vs. cells treated with 50 µM PG. PG, pyrogallol; HPF, human pulmonary fibroblast; LDH, lactate dehydrogenase; MEK, mitogen-activated protein kinase kinase; JNK, c-Jun N-terminal kinase.[1].Han BR, et al. MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O2•- levels. Oncol Lett. 2017 Jul;14(1):1179-118
  • Effects of mitogen-activated protein kinase inhibitors on apoptosis and MMP (ΔΨm) in PG-treated HPF cells. (A) Representative graphs depicting the results of Annexin V-FITC/PI staining. (B) Representative graphs depicting the results of rhodamine 123 staining. M1 regions indicate rhodamine 123− cells, with decreased MMP (ΔΨm). (C) PARP and GAPDH protein levels were assessed in PG-treated HPF cells by western blot. The graph depicts the percentage of Annexin V+ cells from A. (D) The percentage of rhodamine 123− cells from B. *P<0.05 vs. control group. #P<0.05 vs. cells treated with 100 µM PG. MMP (ΔΨm), mitochondrial membrane potential; PG, pyrogallol; HPF, human pulmonary fibroblast; FITC, fluorescein isothiocyanate; PI, propidium iodide; PARP, poly(ADP-ribose) polymerase; MEK, mitogen-activated protein kinase kinase; JNK, c-Jun N-terminal kinase.[1].Han BR, et al. MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O2•- levels. Oncol Lett. 2017 Jul;14(1):1179-118
  • Effects of mitogen-activated protein kinase inhibitors on ROS levels in PG-treated HPF cells. ROS levels were measured using a FACStar flow cytometer. Representative graphs of (A) DHE (O2•−) and (B) mitoSOX (mitochondrial O2•−) levels in PG-treated HPF cells. (C) The graph indicates the percentage of ROS (as determined by H2DCFDA) levels compared with the control cells. The graphs indicate the percentage of (D) DHE (O2•−) levels from (A and E) mitoSOX (mitochondrial O2•−) levels from (B) compared with the control cells. *P<0.05 vs. control group. #P<0.05 vs. cells treated with 50 µM PG. ROS, reactive oxygen species; PG, pyrogallol; HPF, human pulmonary fibroblast; DHE, dihydroethidium; H2DCFDA, 2′,7′-dichlorodihydrofluorescein diacetate; MEK, mitogen-activated protein kinase kinase; JNK, c-Jun N-terminal kinase.[1].Han BR, et al. MAPK inhibitors enhance cell death in pyrogallol-treated human pulmonary fibroblast cells via increasing O2•- levels. Oncol Lett. 2017 Jul;14(1):1179-118
联系我们