SQ22536 (NSC-53339)

别名: SQ22536; SQ 22536; SQ-22,536; SQ22,536; SQ-22536; SQ 22,536; 17318-31-9; 9-(tetrahydrofuran-2-yl)-9h-purin-6-amine; SQ 22536; SQ22536; 9-(Tetrahydro-2-furanyl)-9H-purin-6-amine; Sq 22,536; 9-(Tetrahydrofuryl)adenine; 9H-Purin-6-amine, 9-(tetrahydro-2-furanyl)-; NSC 53339 9-(四氢-2-呋喃)腺膘呤;9-(四氢呋喃-2-基)-9H-嘌呤-6-胺;9-(四氢-2-呋喃基)-9H-嘌呤-6-胺;9-(四氢-2-呋喃基)腺嘌呤
目录号: V2586 纯度: ≥98%
SQ22536(原 NSC-53339)是一种新型有效的腺苷酸环化酶 (AC) 抑制剂,IC50 为 1.4 μM。
SQ22536 (NSC-53339) CAS号: 17318-31-9
产品类别: Adenylate Cyclase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
SQ22536(原 NSC-53339)是一种新型有效的腺苷酸环化酶 (AC) 抑制剂,IC50 为 1.4 μM。它可以抑制 PGE1 刺激的完整人血小板中 cAMP 水平的增加。 SQ22536 (SQ22,536) 有效抑制毛喉素的作用,各自的 IC50 值为 5 μM。与分级浓度的 SQ22536 预孵育表明,两种 SQ22536 都能有效抑制 PACAP 诱导的报告基因激活,IC50 值约为 5 μM。 SQ22536 比 8-Br-cAMP 诱导的 Elk 激活 (IC50=170 μM) 更有效地抑制 forskolin 诱导的 Elk 激活 (IC50=10 μM)。
生物活性&实验参考方法
靶点
adenylate cyclase (AC)
体外研究 (In Vitro)
体外活性:SQ22536 (250 µmol/L) 将腺苷对 ADP 诱导的血小板聚集的抑制作用分别从 8±5% 减弱至 57±5% (p<0.001)。 SQ22536 还可将腺苷引起的血小板内 cAMP 水平从 29±2 pmol/108 血小板减弱至 9±1 pmol/108 个血小板 (p<0.05)。对肌苷(1~4mmol/L)的血小板抗聚集活性和ADP诱导的血小板聚集无影响。激酶测定:SQ22536 比 8-Br-cAMP 诱导的 Elk 激活 (IC50=170 μM) 更有效地抑制毛喉素诱导的 Elk 激活 (IC50=10 μM)。细胞测定:将 HMC-1 细胞和 hCBMC 铺板于 48 孔板中,并进行血清饥饿过夜。第二天,将细胞与指定浓度的 SQ22536 预孵育 30 分钟,然后在存在或不存在 SQ22536 的无血清培养基中用 CRH(HMC-1 为 100 nM,hCBMC 为 1 μM)刺激 3 分钟。然后制备细胞裂解物并使用 ELISA 测定蛋白激酶 A 活性。
体内研究 (In Vivo)
SQ22536 消除了利拉鲁肽对 KK/Ta-Akita 小鼠的肾脏保护作用。在用利拉鲁肽联合SQ22536治疗的KK/Ta-Akita小鼠中,利拉鲁肽对肾小球组织病理学损伤的改善被消除。用 SQ22536 治疗后肾 cAMP 不增加。总之,利拉鲁肽治疗肾病的有益作用被腺苷酸环化酶抑制剂SQ22536抑制。
酶活实验
SQ22536 抑制毛喉素诱导的 Elk 活化比 8-Br-cAMP 诱导的 Elk 活化更有效(IC50 = 170 μM;IC50 = 10 μM)。
细胞实验
大鼠 PAC1hop 受体由转导 HEK293 CRE-luc2P GloResponse 荧光素酶报告细胞的逆转录病毒载体表达。通过使用有限稀释克隆,获得单个细胞系。然后繁殖表达 PAC1 的克隆系并用于 CRE 荧光素酶测定。总之,使用检测培养基(补充有 1% 胎牛血清的 DMEM)将 HEK293 CRE-luc2P 细胞铺在 96 孔板中(每孔 80 μL 培养基中 10,000 个细胞)。铺板一天后,用 AC 抑制剂(测定介质/孔中 10 μL)处理细胞 30 分钟,然后用激动剂(测定介质/孔中 10 μL)处理细胞,并孵育 4 小时。添加 100 μL/孔的 Bright-Glo 荧光素酶检测试剂后,即可测量荧光素酶活性。在室温下搅拌 2 分钟后,在 Victor3 微量滴定板读数器中测量发光 (RLU)。利用 NS-1 细胞对环 AMP 进行定量。 NS-1 细胞实质上是在 96 孔板中接种并生长一整夜。第二天,将细胞在含有 3-异丁基-1-甲基黄嘌呤 (0.5 mM) 磷酸二酯酶抑制剂(含或不含 SQ22536)的培养基中预处理 20 分钟。以 10× 溶液的形式添加激动剂,并在用抑制剂预处理细胞后刺激细胞 20 分钟。然后使用 cAMP Biotrak 酶免疫分析技术测量细胞内 cAMP,从而实现非乙酰化 cAMP 的定量。
动物实验
Male guinea-pigs (Duncan Harver, 250–300 g) were killed by cervical dislocation and the upper thoracic aorta removed and placed in physiological saline solution (PSS) containing in mm; NaCl 112, KCl 5, CaCl2 1.8, MgCl2 1, NaHCO3 25, KH2PO4 0.5, NaH2PO4 0.5, glucose 10 and 0.03 phenol red (pH 7.4 with 95%O2/5% CO2). The tissue was cut into rings (∼2 mm wide, and cut longitudinally) or helical strips (∼2 mm wide, 10 mm long). The endothelium was denuded by gently rubbing the lumen of the muscle with filter paper. Tissues were mounted in an organ bath (0.3 ml) and tension measured isometrically. Muscle strips were subjected to a basal tension of 1.25 g and continuously perfused with PSS (1.0 ml min−1 at 37°C) for 30 min before being precontracted with phenylephrine (1 or 6 μm). Removal of the endothelium was confirmed by lack of relaxation to acethylcholine (10 μm for 2 min). Concentration-response curves were obtained by cumulatively applying iloprost (1–1000 nm) in the absence or presence of the adenylyl cyclase inhibitor, SQ22536 (100 μm). SQ22536 was given 30 min before the addition of iloprost and remained throughout. A 1 h wash-out period was allowed between concentration-response curves.[6]
The stable prostacyclin analogue, iloprost relaxes a variety of blood vessels and increases cyclic AMP, although the relationship between adenosine 3': 5'-cyclic monophosphate (cyclic AMP) and vasorelaxation remains unclear. We therefore investigated the effect of the adenylyl cyclase inhibitor, 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) on iloprost-mediated relaxation and cyclic AMP elevation in endothelium-denuded aortic strips. Iloprost (1-1000 nM) caused a concentration-dependent inhibition of phenylephrine (1-6 microM) contractions, the responses being unaffected by pre-incubation with SQ22536 (100 microM) for 30 min. In other experiments 60 nM iloprost caused a 64% inhibition of phenylephrine contractions concomitant with a 3 fold rise in cyclic AMP. SQ22536 completely abolished the iloprost-induced elevation in cyclic AMP while having no significant effect on relaxation. Our results therefore strongly suggest that cyclic AMP-independent pathways are responsible for the vasorelaxant effects of iloprost in guinea-pig aorta.[6]
Dissolved in saline; 10 mg/kg; s.c.
Male C57BL/6J mice
参考文献

[1]. Eur J Pharmacol . 2002 Feb 2;436(3):227-33.

[2]. Mol Pharmacol . 2006 Mar;69(3):998-1006.

[3]. J Endocrinol . 2015 Mar;224(3):225-34.

[4]. PLoS One . 2014 Nov 13;9(11):e112741.

[5]. Kidney Int . 2014 Mar;85(3):579-89.

[6]. Br J Pharmacol . 1999 Feb;126(4):845-7.
其他信息
9-(tetrahydrofuryl)adenine is a nucleoside analogue that is adenine in which the nitrogen at position 9 has been substituted by a tetrahydrofuran-2-yl group. It is an adenylate cyclase inhibitor. It has a role as an EC 4.6.1.1 (adenylate cyclase) inhibitor. It is a nucleoside analogue and a member of oxolanes. It is functionally related to an adenine.
The effects of inhibition of adenylyl cyclase on isoproterenol-induced relaxation were determined in isolated pulmonary veins of newborn lambs (7-12 days old). In veins constricted with endothelin-1, isoproterenol at concentrations < or = 3 x 10(-9) M had no effect on the cyclic AMP (cAMP) content but caused up to 56% relaxation. At higher concentrations (> or = 10(-8) M), isoproterenol elevated cAMP content and caused further relaxation. In veins constricted with endothelin-1 or U46619 (9,11-dideoxy-11, 9-epoxymethanoprostaglandin prostaglandin F2alpha), the cAMP elevation but not relaxation caused by isoproterenol was abolished by SQ 22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine; an adenylyl cyclase inhibitor]. The effects of isoproterenol on vessel tension and cAMP content were inhibited by propranolol. Rp-8-CPT-cAMPS [8-(4-Chlorophenylthio)-adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer] and Rp-8-Br-PET-cGMPS [beta-phenyl-1, N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp-isomer], inhibitors of cAMP- and guanosine-3',5'-cyclic monophosphate (cGMP)-dependent protein kinases, respectively, attenuated relaxation caused by a cAMP analog but not that by isoproterenol. In the crude membrane preparations of pulmonary veins, an increase in the activity of adenylyl cyclase caused by isoproterenol was abolished by propranolol and SQ 22536. These results suggest that cAMP may not play a critical role in isoproterenol-induced relaxation of pulmonary veins of newborn lambs. [1]
Mast cells are involved in allergic reactions but also in innate immunity and inflammation. Corticotropin-releasing hormone (CRH), the key regulator of the hypothalamic-pituitary-adrenal axis, also has proinflammatory effects, apparently through mast cells. We showed recently that CRH selectively stimulates human leukemic mast cells and human umbilical cord blood-derived mast cells to release newly synthesized vascular endothelial growth factor (VEGF) without release of either preformed mediators or cytokines. This effect was mediated through the activation of CRH receptor-1 and adenylate cyclase with increased intracellular cAMP. However, the precise mechanism by which CRH induces VEGF secretion has not yet been defined. Here, we show that CRH-induced VEGF release was dose-dependently inhibited by the specific protein kinase A inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89) or the p38 mitogen-activated protein kinase (MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) but not by the specific inhibitor 2'-amino-3'-methoxyflavone (PD98059) of mitogen-activated protein kinase kinase, the upstream kinase of the extracellular signal-regulated protein kinase (ERK) or the c-Jun N-terminal kinase (JNK) inhibitor 1,9-pyrazoloanthrone anthra-(1,9-cd)pyrazol-6(2H)-one (SP600125). Furthermore, CRH significantly increased protein kinase A activity, which could be mimicked by the cell-permeable cAMP analog 8-bromo-cAMP, and was blocked by H89 or the adenylate cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine (SQ22536). CRH also induced rapid phosphorylation of p38 MAPK, which was mimicked by 8-bromo-cAMP and was inhibited by H89 or SB203580. CRH did not stimulate ERK or JNK phosphorylation and did not increase intracellular calcium levels. These results indicate that CRH induces VEGF release in human mast cells via selective activation of the cAMP/protein kinase A/p38 MAPK signaling pathway, thereby providing further insight into the molecular mechanism of how CRH affects the release of a key proinflammatory mediator.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C9H11N5O
分子量
205.22
精确质量
205.096
元素分析
C, 52.67; H, 5.40; N, 34.13; O, 7.80
CAS号
17318-31-9
相关CAS号
17318-31-9
PubChem CID
5270
外观&性状
White to off-white solid powder
密度
1.7±0.1 g/cm3
沸点
474.8±55.0 °C at 760 mmHg
熔点
160-161ºC
闪点
241.0±31.5 °C
蒸汽压
0.0±1.2 mmHg at 25°C
折射率
1.831
LogP
-0.17
tPSA
78.85
氢键供体(HBD)数目
1
氢键受体(HBA)数目
5
可旋转键数目(RBC)
1
重原子数目
15
分子复杂度/Complexity
239
定义原子立体中心数目
0
SMILES
O1C([H])([H])C([H])([H])C([H])([H])C1([H])N1C([H])=NC2=C(N([H])[H])N=C([H])N=C12
InChi Key
UKHMZCMKHPHFOT-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H11N5O/c10-8-7-9(12-4-11-8)14(5-13-7)6-2-1-3-15-6/h4-6H,1-3H2,(H2,10,11,12)
化学名
9-(oxolan-2-yl)purin-6-amine
别名
SQ22536; SQ 22536; SQ-22,536; SQ22,536; SQ-22536; SQ 22,536; 17318-31-9; 9-(tetrahydrofuran-2-yl)-9h-purin-6-amine; SQ 22536; SQ22536; 9-(Tetrahydro-2-furanyl)-9H-purin-6-amine; Sq 22,536; 9-(Tetrahydrofuryl)adenine; 9H-Purin-6-amine, 9-(tetrahydro-2-furanyl)-; NSC 53339
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 41~100 mg/mL (199.8~487.3 mM)
Water: ~41 mg/mL (~199.8 mM)
Ethanol: ~41 mg/mL (~199.8 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (12.18 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (12.18 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (12.18 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 25 mg/mL (121.82 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 4.8728 mL 24.3641 mL 48.7282 mL
5 mM 0.9746 mL 4.8728 mL 9.7456 mL
10 mM 0.4873 mL 2.4364 mL 4.8728 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • SQ22536

    Evaluation of cell-permeable AC inhibitors.2013 Jan;83(1):95-105.

  • SQ22536

    SQ22,536 inhibits cAMP-dependent ERK phosphorylation, but not NGF or PMA-induced ERK phosphorylation.2013 Jan;83(1):95-105.

  • SQ22536

    SQ22,536 inhibits cAMP-dependent Elk activation.2013 Jan;83(1):95-105.

相关产品
联系我们