Taurocholic acid (N-Choloyltaurine)

别名: Taurocholate; TAUROCHOLIC ACID; Taurocholate; 81-24-3; Cholaic acid; Cholyltaurine; N-Choloyltaurine; Cholic acid taurine conjugate; Taurine, N-choloyl-; Cholyltaurine; N-Choloyl taurine 牛黄胆酸; 3α,7α,12α-三羟基-5β-胆甾烷-24-羧酸-24-牛黄酸酰胺; N-(3α,7α,12α)三羟基-5β-胆甾烷-24-酰基牛黄酸; 胺乙磺膽酸; 牛膽酸; 牛磺胆酸;N-(3Alpha,7Alpha,12Alpha)三羟基-5β-胆甾烷-24-酰基牛黄酸
目录号: V29224 纯度: ≥98%
牛磺胆酸(Taurocholate;Cholyltaurine;N-Choloyltaurine)是一种牛磺酸结合胆汁酸,由胆酸与牛磺酸结合产生,内源性产生。
Taurocholic acid (N-Choloyltaurine) CAS号: 81-24-3
产品类别: Endogenous Metabolite
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Taurocholic acid (N-Choloyltaurine):

  • 牛磺胆酸钠
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
牛磺胆酸(Taurocholate;Cholyltaurine;N-Choloyltaurine)是一种牛磺酸结合胆汁酸,由胆酸与牛磺酸结合产生,内源性产生。它可以用作利胆剂和利胆剂。
生物活性&实验参考方法
靶点
Endogenous Metabolite; Microbial Metabolite
体外研究 (In Vitro)
在 HBeAg 阳性 CHB 患者分离的 PBMC 中,牛磺胆酸(100 μM,24 小时)可降低 CD3+CD8+ T 和 NK 细胞的百分比[2]。牛磺胆酸(100 μM,24 小时)可降低 CD3+CD8+ T 和 NK 细胞中 IFN-α 驱动的细胞因子和细胞毒性颗粒水平(IFN-γ、TNF-α、颗粒酶 B)[2]。
牛磺胆酸(TCA)在体外抑制IFN-α的免疫调节活性[2]
鉴于IFN-α是重要的免疫调节剂[33],且我们的研究结果表明牛磺胆酸(TCA)不仅抑制慢性乙型肝炎(CHB)患者对IFN-α治疗的应答反应,还在体外和体内实验中抑制CD3+CD8+ T细胞与NK细胞的效应功能(图2-5),我们推测TCA可能通过抑制IFN-α的免疫调节活性来削弱其功能。由于缺乏合适的HBeAg阳性CHB动物模型[34],我们采用HBeAg阳性CHB患者新鲜分离的外周血单个核细胞(PBMCs)进行实验。将细胞分别用IFN-α或TCA联合IFN-α刺激24小时后,通过流式细胞术检测CD3+CD8+ T细胞和NK细胞内IFN-γ、TNF-α、颗粒酶B及穿孔素的表达水平。结果显示,与对照组相比,IFN-α刺激显著提升了这些效应分子水平(图6),这与既往研究[35,36]一致;而TCA联合IFN-α组则较单独IFN-α组表现出明显的效应分子表达下降(图6)。这些结果充分证明,牛磺胆酸(TCA)在体外能显著抑制IFN-α的免疫调节作用。
体外实验证实,牛磺胆酸(TCA)可通过促进胆管细胞分泌VEGF-A来刺激其增殖——该效应可被渥曼青霉素阻断,且VEGFR-2激酶抑制剂能有效抑制这种促增殖作用。[3]
体内研究 (In Vivo)
当rAAV8-1.3HBV注射到C57BL/6小鼠尾静脉时,牛磺胆酸(口服灌胃,100mg/kg,2周)可以通过降低NK和CD3+CD8+T细胞的比例来增加HBV复制[2] 。通过上调 VEGF-A 表达,牛磺胆酸(饮食中 1%,1 周)可保护肝动脉结扎 (HAL) 引起的胆管细胞损伤 [3]。
本研究发现脂多糖(LPS)和环孢素A(CsA)可分别上调和下调TNF-α与IL-1β的基因及蛋白表达。牛磺胆酸(TCA)(0.25g/kg、0.125g/kg)能恢复被抑制的TNF-α和IL-1β表达,并提高CD4(+)/CD8(+)比值。体外实验中,TCA(15μg/mL)可抑制TNF-α和IL-1β的过度产生;TCA(0.15μg/mL-15μg/mL)能抑制IL-1β和TNF-α基因表达的异常升高;而TCA(0.15μg/mL)则可恢复被抑制的TNF-α和IL-1β表达水平。 结论:牛磺胆酸(TCA)的免疫调节功能可能通过调控TNF-α和IL-1β的基因与蛋白表达,以及提升CD4(+)/CD8(+) T细胞比例来实现。[1]
牛磺胆酸(TCA)在体内损害CD3+CD8+ T细胞和NK细胞的效应功能[2]
为验证TCA是否在体内抑制CD3+CD8+ T细胞和NK细胞的效应功能,我们在尾静脉注射rAAV8-1.3HBV病毒6周后,对C57BL/6小鼠进行为期2周的TCA灌胃(100mg/kg/天)或对照饮食处理(图5A)。灌胃后血清TCA水平显著升高(图S6)。研究发现TCA处理显著降低了NK和CD3+CD8+ T细胞比例(图5B)。此外,与对照组相比,TCA处理组小鼠的CD8+ T细胞和NK细胞产生的细胞因子及细胞毒性颗粒水平更低(图5C、D)。重要的是,TCA处理组小鼠血清HBsAg、HBeAg和HBV DNA水平均高于对照组(图5E)。这些结果表明,TCA通过降低CD3+CD8+ T细胞和NK细胞比例并损害其效应功能来促进HBV复制。
在胆管结扎(BDL)联合肝动脉结扎(HAL)大鼠模型中,长期饲喂牛磺胆酸(TCA)可预防HAL引起的胆管丢失和胆管细胞分泌功能下降。牛磺胆酸(TCA)还能阻止HAL诱导的肝组织VEGF-A和VEGFR-2表达降低以及循环VEGF-A水平下降,这些保护作用可被渥曼青霉素预处理所阻断。[3]
细胞实验
脾淋巴细胞上清液及总RNA制备[1]
将脾淋巴细胞悬浮于含3 mM L-谷氨酰胺、10 mM HEPES缓冲液、100 U/mL青霉素-链霉素及10%胎牛血清(FBS)的RPMI-1640培养基中,调整细胞浓度为1×10⁶个/mL,接种至六孔培养板(2 mL/孔),分别加入LPS(终浓度10 μg/mL)或CsA(终浓度0.01 μg/mL)。实验随机分为6组:对照组(正常小鼠淋巴细胞)、LPS/CsA组(仅含LPS/CsA);其余4组分别加入不同浓度牛磺胆酸(TCA)(0.015 μg/mL、0.15 μg/mL、1.5 μg/mL和15 μg/mL)。培养48小时后,采用相应方法制备淋巴细胞上清液和总RNA。
体外细胞培养与刺激[2]
新鲜分离的人外周血单个核细胞(PBMCs)接种于96孔板,在37℃、5% CO2条件下培养。细胞分为三组:空白培养基组、IFN-α(1000 U/ml)组、IFN-α(1000 U/ml)联合牛磺胆酸(TCA)(100 μM)组,处理24小时。随后用佛波醇12-肉豆蔻酸酯13-乙酸酯(PMA)和离子霉素刺激5小时,通过流式细胞术检测NK细胞和CD8+ T细胞内IFN-γ、TNF-α、颗粒酶B及穿孔素的表达。
牛磺胆酸盐介导NRIC增殖中VEGF-A分泌的作用评估[3]
胰酶消化后,将NRIC以每孔10,000个细胞接种于96孔板(每孔200 μL培养基)。实验设置:空白对照组、牛磺胆酸(20 μM)组、渥曼青霉素(100 nM)预处理1小时后牛磺胆酸刺激组、VEGFR-2激酶抑制剂I(100 nM)预处理1小时后牛磺胆酸刺激组,处理48小时。采用CellTiter 96 AQueous One Solution细胞增殖检测试剂盒评估NRIC增殖情况,于490 nm波长测定吸光度。数据以处理组相对于对照组的倍数变化表示。为验证NRIC上清液对胆管细胞增殖的差异性刺激作用(取决于上清液中VEGF含量),我们分别用BSA或20 μM牛磺胆酸(TCA)处理NRIC 24小时获取上清液(后者含更高水平VEGF-A),在渥曼青霉素(100 nM)预处理1小时或不预处理条件下,通过PCNA免疫印迹检测细胞生长情况。
动物实验
Animal/Disease Models: C57BL/6 mice[2]
Doses: 100-mg/kg
Route of Administration: po (oral gavage), for 2 weeks after tail vein injection with rAAV8-1.3HBV for 6 weeks
Experimental Results: decreased the percentage of NK and CD3+CD8+ T cells . Increases serum HBsAg, HBeAg, and HBV DNA levels.
Taurocholic acid (TCA) dissociated and depurated [1]
Fresh bovine and/or sheep galls were collected from a slaughterhouse. The bile was deproteinated using alcohol after filtered by filter paper, and then it was condensed using rotary evaporator after depigmented by activated carbon. Crude bile acids were obtained after salting out, extracting and dewatering. Taurocholic acid (TCA) was dissociated and depurated from crude bile acid by chromatography techniques and the purity was detected by high performance liquid chromatography. Its purity was > 98.7%.
Kunming mice (half male and half female), weight 20 ± 2 g, were obtained from the experimental center, Inner Mongolia University. All animals were maintained at a controlled temperature (22 ± 2 °C), and a regular light/dark cycle (7:00 am–7:00 pm, light) and all animals had free access to food and water. The animals were divided into 7 groups of 8 each (Table 1). All animals were treated orally by administration of intra-gastric gavage (i.g.) once daily and sacrificed after 7 days of treatment. Peripheral blood, serum and spleen were prepared for flow cytometry, ELISA and mRNA extraction respectively.
Establishment of a recombinant adeno-associated virus type 8 (rAAV8)-mediated HBV replication mouse model [2]
rAAV8 carrying the 1.3-mer wild-type HBV genome (rAAV8-1.3HBV) was used to establish an immunocompetent mouse model for chronic HBV infection.27 A total of 5 × 1010 viral genomes/200 μl virus were injected into the tail vein of each C57BL/6 mouse. The mice were bled every other week to monitor the HBsAg, HBeAg, and HBV DNA levels. After 6 weeks, mice were fed by oral gavage for 2 weeks with either 100-mg/kg Taurocholic acid (TCA) daily or a control diet. Following this, the mice were sacrificed. Male Fischer 344 rats (150 to 175 gm) were kept in a temperature-controlled environment (22°C) with a 12-hour light-dark cycle and fed ad libitum rat chow. The studies were performed in: (i) BDL (for isolation of cells) or bile duct incannulated (BDI, for bile collection) rats that (immediately after BDL or BDI) were fed bile acid control diet or 1% taurocholic acid diet (which represents an approximate dose of 275 μmol/day) for 1 week; (ii) rats that (immediately after BDL or BDI + HAL) were fed bile acid control diet or 1% taurocholic acid diet; and (iii) rats that (immediately after BDL or BDI + HAL) were fed 1% Taurocholic acid (TCA) for 1 week in the presence of daily injections of 0.9% NaCl or wortmannin (0.7 mg/kg body weight). The groups of animals used in the study are summarized in Table 1. Since we have previously shown that daily injections of wortmannin or DMSO (in which wortmannin is dissolved) to BDL or BDI rats do not affect cholangiocyte apoptosis, proliferation and functional activity, these groups of animals were not included in the study. BDL, BDI and HAL were performed as described. Before each procedure, animals were anesthetized with sodium pentobarbital (50 mg/kg body weight, IP).[3]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Transported by carrier-mediated processes bidirectionally across mammalian proximal tubule.
After secretion into the biliary tract, bile acids are largely (95%) reabsobed in the intestine (mainly in the terminal ileum), returned to the liver, and then again secreted in bile (enterohepatic circulation).
The disposition kinetics of [(3)H]taurocholate ([(3)H]TC) in perfused normal and cholestatic rat livers were studied using the multiple indicator dilution technique and several physiologically based pharmacokinetic models. The serum biochemistry levels, the outflow profiles and biliary recovery of [(3)H]TC were measured in three experimental groups: (i) control; (ii) 17 alpha-ethynylestradiol (EE)-treated (low dose); and (iii) EE-treated (high dose) rats. EE treatment caused cholestasis in a dose-dependent manner. A hepatobiliary TC transport model, which recognizes capillary mixing, active cellular uptake, and active efflux into bile and plasma described the disposition of [(3)H]TC in the normal and cholestatic livers better than the other pharmacokinetic models. An estimated five- and 18-fold decrease in biliary elimination rate constant, 1.7- and 2.7-fold increase in hepatocyte to plasma efflux rate constant, and 1.8- and 2.8-fold decrease in [(3)H]TC biliary recovery ratio was found in moderate and severe cholestasis, respectively, relative to normal. There were good correlations between the predicted and observed pharmacokinetic parameters of [(3)H]TC based on liver pathophysiology (e.g. serum bilirubin level and biliary excretion of [(3)H]TC). In conclusion, these results show that altered hepatic /taurocholate/ pharmacokinetics in cholestatic rat livers can be correlated with the relevant changes in liver pathophysiology in cholestasis.
It has been reported that the adjuvant-induced inflammation could affect drug metabolism in liver. /The authors/ further investigated the effect of inflammation on drug transport in liver using taurocholate as a model drug. The hepatic disposition kinetics of [(3)H]taurocholate in perfused normal and adjuvant-treated rat livers were investigated by the multiple indicator dilution technique and data were analyzed by a previously reported hepatobiliary taurocholate transport model. Real-time RT-PCR was also performed to determine the mRNA expression of liver bile salt transporters in normal and diseased livers. The uptake and biliary excretion of taurocholate were impaired in the adjuvant-treated rats as shown by decreased influx rate constant k(in) (0.65 +/- 0.09 vs. 2.12 +/- 0.30) and elimination rate constant k(be) (0.09 +/- 0.02 vs. 0.17 +/- 0.04) compared with control rat group, whereas the efflux rate constant k(out) was greatly increased (0.07 +/- 0.02 vs. 0.02 +/- 0.01). The changes of mRNA expression of liver bile salt transporters were found in adjuvant-treated rats. Hepatic taurocholate extraction ratio in adjuvant-treated rats (0.86 +/- 0.05, n = 6) was significantly reduced compared with 0.93 +/- 0.05 (n = 6) in normal rats. Hepatic extraction was well correlated with altered hepatic ATP content (r(2) = 0.90). In conclusion, systemic inflammation greatly affects hepatic ATP content/production and associated transporter activities and causes an impairment of transporter-mediated solute trafficking and pharmacokinetics.
For more Absorption, Distribution and Excretion (Complete) data for TAUROCHOLIC ACID (6 total), please visit the HSDB record page.
Metabolism / Metabolites
Taurocholic acid has known human metabolites that include 2-[[(4R)-4-[(3R,5R,7R,10S,12S,13R)-7,12-Dihydroxy-10,13-dimethyl-3-sulfooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid.
毒性/毒理 (Toxicokinetics/TK)
Interactions
Sitosterol & taurocholate given together to rats inhibited cholesterol 7alpha-hydroxylase activity.
Chickens receiving taurocholate iv did not show active tubular excretion; however, it inhibited tubular excretioN of phenolsulfonphthaleiN & of n-methylnicotinamide.
In the anesthetized rat, the low incidence of erosions with indomethacin was markedly increased by concurrent gastric perfusion with acid saline & taurocholate.
When a combination of aspirin & taurocholic acid was introduced to 8 subjects the mean electrical potential difference also fell significantly from 38.6 1.8 mv to 17.9 1.8 mv, but mean duration of this change (27 min) was significantly longer than found after individual admin.
For more Interactions (Complete) data for TAUROCHOLIC ACID (14 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Mice ip 620 mg/kg
LD50 Rat ip 450 mg/kg
参考文献

[1]. Effects of taurocholic acid on immunoregulation in mice. Int Immunopharmacol. 2013 Feb;15(2):217-22.

[2]. Taurocholic acid inhibits the response to interferon-α therapy in patients with HBeAg-positive chronic hepatitis B by impairing CD8+ T and NK cell function. Cell Mol Immunol. 2021 Feb;18(2):461-471.

[3]. Taurocholic acid prevents biliary damage induced by hepatic artery ligation in cholestatic rats. Dig Liver Dis. 2010 Oct;42(10):709-17.

其他信息
Taurocholic acid is a bile acid taurine conjugate of cholic acid that usually occurs as the sodium salt of bile in mammals. It has a role as a human metabolite. It is an amino sulfonic acid and a bile acid taurine conjugate. It is functionally related to a cholic acid. It is a conjugate acid of a taurocholate.
The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic.
Taurocholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Taurocholic acid has been reported in Ursus thibetanus, Homo sapiens, and other organisms with data available.
taurocholic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic.
Therapeutic Uses
Cholagogues and Choleretics; Detergents
Dried bile from the Himalayan bear (Yutan) has been used for centuries in China to treat liver disease. /Bile/
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₃₀H₅₃NO₇S
分子量
571.81
精确质量
515.291
CAS号
81-24-3
相关CAS号
145-42-6 (mono-hydrochloride salt)
PubChem CID
6675
外观&性状
Clusters of slender, four-sided prisms from alcohol + ether
Crystals
密度
1.265g/cm3
熔点
125°C (rough estimate)
折射率
1.565
LogP
3.839
tPSA
152.54
氢键供体(HBD)数目
5
氢键受体(HBA)数目
7
可旋转键数目(RBC)
7
重原子数目
35
分子复杂度/Complexity
891
定义原子立体中心数目
11
SMILES
C[C@H](CCC(NCCS(=O)(O)=O)=O)[C@@]1(C)CC[C@@]2(C)[C@]3(C)[C@H](O)C[C@]4([H])C[C@H](O)CC[C@]4(C)[C@]3(C)C[C@H](O)[C@]12C
InChi Key
WBWWGRHZICKQGZ-HZAMXZRMSA-N
InChi Code
InChI=1S/C26H45NO7S/c1-15(4-7-23(31)27-10-11-35(32,33)34)18-5-6-19-24-20(14-22(30)26(18,19)3)25(2)9-8-17(28)12-16(25)13-21(24)29/h15-22,24,28-30H,4-14H2,1-3H3,(H,27,31)(H,32,33,34)/t15-,16+,17-,18-,19+,20+,21-,22+,24+,25+,26-/m1/s1
化学名
2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]ethanesulfonic acid
别名
Taurocholate; TAUROCHOLIC ACID; Taurocholate; 81-24-3; Cholaic acid; Cholyltaurine; N-Choloyltaurine; Cholic acid taurine conjugate; Taurine, N-choloyl-; Cholyltaurine; N-Choloyl taurine
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~193.91 mM)
H2O : ~100 mg/mL (~193.91 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.85 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (4.85 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (4.85 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7488 mL 8.7442 mL 17.4883 mL
5 mM 0.3498 mL 1.7488 mL 3.4977 mL
10 mM 0.1749 mL 0.8744 mL 1.7488 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

相关产品
联系我们