Anacetrapib (MK-0859)

别名: MK 0859; Anacetrapib; MK0859; Anacetrapib; 875446-37-0; Anacetrapib (MK-0859); (4s,5r)-5-[3,5-bis(trifluoromethyl)phenyl]-3-({2-[4-fluoro-2-methoxy-5-(propan-2-yl)phenyl]-5-(trifluoromethyl)phenyl}methyl)-4-methyl-1,3-oxazolidin-2-one; P7T269PR6S; CHEMBL1800807; MK-0859; 胆固醇脂转移蛋白阻滞剂; 安塞曲匹; (4S,5R)-5-(3,5-双(三氟甲基)苯基)-3-((4-氟-2-甲氧基-4-(三氟甲基)-[1,1-联苯]-2-基)甲基)-4-甲基噁唑啉-2-酮; Anacetrapib (MK-0859) ;anacetrapib标准品;安塞曲匹Anacetrapib;安塞曲匹API;安赛曲匹
目录号: V0911 纯度: ≥98%
Anacetrapib(以前也称为 MK0859;MK-0859)是一种多氟化亲脂性化合物,是 CETP(胆固醇酯转移蛋白)和突变 CETP(C13S) 的选择性可逆抑制剂,具有治疗心血管疾病的潜力。
Anacetrapib (MK-0859) CAS号: 875446-37-0
产品类别: CETP
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Anacetrapib(以前也称为 MK0859;MK-0859)是一种多氟化亲脂性化合物,是 CETP(胆固醇酯转移蛋白)和突变 CETP(C13S) 的选择性可逆抑制剂,具有治疗心血管疾病的潜力。 In 抑制 CETP 和突变体 CETP(C13S),IC50 分别为 7.9 nM 和 11.8 nM。 Anacetrapib 会增加 HDL-C 并降低 LDL-C,并且不会增加醛固酮或血压。它正在开发用于治疗高胆固醇血症(胆固醇水平升高)和预防心血管疾病。胆固醇酯转移蛋白,也称为血浆脂质转移蛋白,是一种促进胆固醇酯和甘油三酯在脂蛋白之间转运的血浆蛋白。
生物活性&实验参考方法
靶点
Cholesteryl ester transfer protein (CETP); recombinant human (rh) CETP (IC50 = 7.9 nM)[1]; CETPC13S (IC50 = 11.8 nM)[2]
体外研究 (In Vitro)
anacetrapib 可显着且剂量依赖性地减少 CE 从 HDL3 到 HDL2 的转移(对于高达并包括 0.1 µM 的剂量,P<0.001)。过量的 anacetrapib (25 µM) 使 [14C]Torcetrapib (0.25 µM) 与固定化 rhCETP 结合的量分别减少 82% 和 60%。 anacetrapib 在所有研究浓度(0.1、1、3 和 10 µM)下,前 β-HDL 产量减少了 46% 以上(P<0.001)[1]。 Anacetrapib (ANA) 显着降低 PCSK9 启动子活性;这是在 3 µM 浓度下观察到的(-22%,p<0.01),在 10 µM 浓度下甚至更低,为对照的 68%。同样,Anacetrapib 从 3 µM 浓度开始降低 B11 细胞的荧光素酶活性,在 10 µM 浓度时最大程度降低 38%。 Anacetrapib 在 10 µM 浓度下将 PCSK9 mRNA 降低至对照的 60%,将 LDLR mRNA 降低至对照的 67%[2]。
体内研究 (In Vivo)
在兔子身上,dalcetrapib(JTT-705)(30或100mg/kg;口服;每天一次,持续三天)显著提高了血浆HDL胆固醇[2]。服用达克雷替布(100mg/kg;ir;每天两次,持续7天)后,粪便中的中性甾醇、胆汁酸和血浆高密度脂蛋白胆固醇显著增加[1]
在注射[3H]胆固醇标记的自体巨噬细胞的仓鼠中,并给予dalcetrapib(100 mg每日两次)、torcetrapib[30 mg每日一次(QD)]或anacetrapib(30 mg QD),只有dalcetrapib显著增加了[3H]中性甾醇和[3H]胆汁酸的粪便清除,而所有化合物都增加了血浆HDL-[3H]胆固醇。这些数据表明,dalcetrapib对CETP活性的调节不会抑制CETP诱导的前β-HDL形成,这可能是增加胆固醇逆向转运所必需的。1.
在注射 [3H]胆固醇标记的巨噬细胞(第 0 天)之前,将anacetrapib 给予仓鼠 7 天。 Anacetrapib 治疗后第 0 天 HDL-C 值显着升高。第 3 天 HDL 部分中的 [3H] 胆固醇放射性显着高于 anacetrapib 对照值[1]。与媒介对照相比,anacetrapib(ANA) 药物使血清总胆固醇的血清水平轻微升高约 10% (p<0.05),使 LDL-C 的血清水平轻微升高 26% (p<0.05)[2]。静脉注射0.5 mg/kg剂量后的终末半衰期、稳态分布容积和全身血浆清除率的平均值分别为12小时、1.1 L/kg和2.3 mL/min/kg。 anacetrapib 口服 5 mg/kg 后生物利用度为 38%。暴露量 (AUC) 从 5 mg/kg 时的 23 μM·h 上升至 500 mg/kg 时的 362 μM·h,其方式与剂量不成比例。在此剂量范围内,达到峰值血浆水平(Tmax)的时间为3至4.5小时,峰值血浆水平(Cmax)为5至26μM[3]。
酶活实验
dalcetrapib与Cys13的选择性结合。[1]
通过定点突变构建了含有丝氨酸残基而不是Cys13的CETP(C13S CETP)。该蛋白在大规模瞬时转染的HEK293EBNA细胞中表达,并按照下文所述的重组人(rh)CETP纯化。
抑制rhCETP和C13S CETP介导的CE从HDL向LDL的转移。[1]
使用闪烁邻近分析试剂盒测量了达昔珠单抗、托昔珠单抗和阿曲匹布减少rhCETP和C13S CETP从HDL到LDL的CE转移的抑制效力(IC50)。简而言之,在37°C下,将[3H]CE标记的HDL供体颗粒与纯化的CETP蛋白(终浓度0.5µg/ml)和生物素化的LDL受体颗粒一起孵育3小时。随后,加入含有选择性结合生物素化LDL的液体闪烁鸡尾酒的链霉抗生物素蛋白偶联聚乙烯甲苯珠,并通过β计数测量转移到LDL的[3H]CE分子的量。
抑制CE从HDL3转移到HDL2。[1]
如前所述,使用放射性标记的脂质转移试验评估HDL亚组分之间的脂质运动。脂蛋白亚组分(d>1.063 g/ml)用[3H]CE标记。通过连续超速离心制备[3H]CE标记的HDL3(1.125 CETP上化合物的结合位点:琼脂糖固定化rhCETP上结合位点的竞争。[1]
根据Connolly等人的研究,使用Weinberg等人描述的细胞系表达的rhCETP进行结合研究,并通过疏水相互作用色谱和尺寸排阻色谱(SEC)纯化。BSA和rhCETP被固定在溴化氰活化的sepharoseTM 4 Fast Flow上。测定了300 pmol固定的rhCETP(3μM)或相同质量的BSA分别与0.25μM[14C]torcetrapib或2.5μM[114C]dalcetrapib混合,以及总体积为100μl的未标记CETP抑制剂与放射性化合物预孵育后的竞争(共孵育实验)和置换(后者有或没有还原剂三(2-羧乙基)膦(TCEP))。在与CETP孵育之前,用胰脂肪酶处理[14C]达昔珠单抗以产生[14C]达昔珠单抗硫醇。通过闪烁计数测量与琼脂糖结合的放射性。
细胞实验
LDL摄取测定[2]
将6孔培养板中的HepG2细胞用anacetrapib处理24小时。处理结束时,将浓度为2µg/ml的荧光DiI-LDL加入细胞中4小时,并对细胞进行胰蛋白酶处理。使用FACScan测量1×104个细胞的平均红色荧光。2.
小干扰RNA(siRNA)转染[2]
从Dharmacon 获得了四种针对人类CETP mRNA的预先设计的siRNA。消音器阴性对照siRNA购自Applied Biosystem。使用siPORT NeoFX siRNA转染试剂将4×10个细胞与50 nM siRNA混合,并放置在6孔板中。第二天,将新鲜培养基加入转染的细胞中,然后在分离总RNA之前用anacetapib处理细胞24小时。[2]
ELISA定量前β-HDL:在torcetrapib、anacetrapib和Dalcetrapib(JTT-705)(0.10µM至10µM)的存在下,将添加或不添加rhCETP的样品孵育21小时。如前所述,通过ELISA测量前β-HDL浓度[1]。
动物实验
In vivo RCT study.[1]
To investigate the effect of dalcetrapib, torcetrapib, and anacetrapib on macrophage-to-feces RCT, radiolabeled macrophages from the peritoneal cavity of donor Golden Syrian hamsters preinjected with [3H]cholesterol were prepared as previously described. Male recipient Golden Syrian hamsters, 8 weeks old, on a standard chow diet were preadministered dalcetrapib [100 mg/kg twice daily (BID)], torcetrapib [30 mg/kg once daily (QD)], anacetrapib (30 mg/kg QD), or vehicle (0.5% methylcellulose BID) for 7 days by oral gavage before intraperitoneal injection of [3H]cholesterol-labeled macrophages (3.8 × 106 cells/90.6 kBq/0.5 ml per animal) at day 0. The percentage of esterified cholesterol in injected macrophages was 21% (mass) and 16% (labeled). Animals continued to receive vehicle or test compounds daily for 10 days. Samples for plasma lipid analysis were obtained on days −7, 0, 3, 7, and 10 and for radioactivity levels on days 3, 7, and 10. Total cholesterol and HDL-C were measured by enzymatic methods. HDL-C was measured as the cholesterol concentration in the HDL fraction separated by polyethylene glycol 6000 solution. The area under the plasma HDL-C concentration-time curve (HDL-C·AUC) during the RCT study period (day 0 to day 10) was calculated from plasma HDL-C levels (at day 0, 3, 7, and 10) by the trapezoidal method.
Dissolved in polyethylene glycol 300-water (7:3, v/v); 2.5 mL/kg (2.5, 25, 50, 250 mg/mL); oral gavage
Adult male Sprague-Dawley rats
药代性质 (ADME/PK)
The pharmacokinetics and metabolism of anacetrapib (MK-0859), a novel cholesteryl ester transfer protein inhibitor, were examined in rats and rhesus monkeys. Anacetrapib exhibited a low clearance in both species and a moderate oral bioavailability of approximately 38% in rats and approximately 13% in monkeys. The area under the plasma concentration-time curve in both species increased in a less than dose-proportional manner over an oral dose range of 1 to 500 mg/kg. After oral administration of [(14)C]anacetrapib at 10 mg/kg, approximately 80 and 90% of the radioactive dose was recovered over 48 h postdose from rats and monkeys, respectively. The majority of the administered radioactive dose was excreted unchanged in feces in both species. Biliary excretion of radioactivity accounted for approximately 15% and urinary excretion for less than 2% of the dose. Thirteen metabolites, resulting from oxidative and secondary glucuronic acid conjugation, were identified in rat and monkey bile. The main metabolic pathways consisted of O-demethylation (M1) and hydroxylation on the biphenyl moiety (M2) and hydroxylation on the isopropyl side chain (M3); these hydroxylations were followed by O-glucuronidation of these metabolites. A glutathione adduct (M9), an olefin metabolite (M10), and a propionic acid metabolite (M11) also were identified. In addition to parent anacetrapib, M1, M2, and M3 metabolites were detected in rat but not in monkey plasma. Overall, it appears that anacetrapib exhibits a low-to-moderate degree of absorption after oral dosing and majority of the absorbed dose is eliminated via oxidation to a series of hydroxylated metabolites that undergo conjugation with glucuronic acid before excretion into bile.[3]
参考文献

[1]. Modulating cholesteryl ester transfer protein activity maintains efficient pre-β-HDL formation and increases reverse cholesterol transport. J Lipid Res. 2010, 51(12), 3443-3454.

[2]. CETP inhibitors downregulate hepatic LDL receptor and PCSK9 expression in vitro and in vivo through a SREBP2 dependent mechanism. Atherosclerosis. 2014 Aug;235(2):449-62.

[3]. Pharmacokinetics, metabolism, and excretion of anacetrapib, a novel inhibitor of the cholesteryl ester transfer protein, in rats and rhesus monkeys. Drug Metab Dispos. 2010, 38(3), 459-473.

其他信息
Anacetrapib is a cholesteryl ester transfer protein (CETP) inhibitor with hypocholesterolemic properties. Anacetrapib reduces the transfer of cholesteryl ester from HDL to LDL and/or VLDL thereby, producing an increase in serum HDL-cholesterol levels and a decrease in serum LDL-cholesterol levels. This agent has not yet been shown to reduce deaths associated with hypercholesterolemia.
Drug Indication
Investigated for use/treatment in hyperlipidemia.
Prevention of cardiovascular events in patients with hypercholesterolaemia, Treatment of hypercholesterolaemia
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C30H25F10NO3
分子量
637.51
精确质量
637.167
元素分析
C, 56.52; H, 3.95; F, 29.80; N, 2.20; O, 7.53
CAS号
875446-37-0
相关CAS号
875446-37-0
PubChem CID
11556427
外观&性状
White to off-white solid powder
密度
1.3±0.1 g/cm3
沸点
555.3±50.0 °C at 760 mmHg
闪点
289.6±30.1 °C
蒸汽压
0.0±1.5 mmHg at 25°C
折射率
1.494
LogP
8.81
tPSA
38.77
氢键供体(HBD)数目
0
氢键受体(HBA)数目
13
可旋转键数目(RBC)
6
重原子数目
44
分子复杂度/Complexity
964
定义原子立体中心数目
2
SMILES
C[C@H]1[C@H](OC(=O)N1CC2=C(C=CC(=C2)C(F)(F)F)C3=CC(=C(C=C3OC)F)C(C)C)C4=CC(=CC(=C4)C(F)(F)F)C(F)(F)F
InChi Key
MZZLGJHLQGUVPN-HAWMADMCSA-N
InChi Code
InChI=1S/C30H25F10NO3/c1-14(2)22-11-23(25(43-4)12-24(22)31)21-6-5-18(28(32,33)34)9-17(21)13-41-15(3)26(44-27(41)42)16-7-19(29(35,36)37)10-20(8-16)30(38,39)40/h5-12,14-15,26H,13H2,1-4H3/t15-,26-/m0/s1
化学名
(4S,5R)-5-[3,5-bis(trifluoromethyl)phenyl]-3-[[2-(4-fluoro-2-methoxy-5-propan-2-ylphenyl)-5-(trifluoromethyl)phenyl]methyl]-4-methyl-1,3-oxazolidin-2-one
别名
MK 0859; Anacetrapib; MK0859; Anacetrapib; 875446-37-0; Anacetrapib (MK-0859); (4s,5r)-5-[3,5-bis(trifluoromethyl)phenyl]-3-({2-[4-fluoro-2-methoxy-5-(propan-2-yl)phenyl]-5-(trifluoromethyl)phenyl}methyl)-4-methyl-1,3-oxazolidin-2-one; P7T269PR6S; CHEMBL1800807; MK-0859;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 127 mg/mL (199.2 mM)
Water:<1 mg/mL
Ethanol:127 mg/mL (199.2 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.75 mg/mL (4.31 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 27.5 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

配方 2 中的溶解度: 30% PEG400+0.5% Tween80+5% propylene glycol:10 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.5686 mL 7.8430 mL 15.6860 mL
5 mM 0.3137 mL 1.5686 mL 3.1372 mL
10 mM 0.1569 mL 0.7843 mL 1.5686 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01841684 Terminated Drug: Anacetrapib
Drug: Placebo
Hyperlipoproteinemia Type II Merck Sharp & Dohme LLC June 2013 Phase 3
NCT01524289 Completed Has Results Hyperlipoproteinemia Type II
Hypercholesterolemia, Familial
Drug: Anacetrapib
Drug: Placebo
Merck Sharp & Dohme LLC February 3, 2012 Phase 3
NCT01122667 Completed Drug: anacetrapib Dyslipidemia Merck Sharp & Dohme LLC June 2010 Phase 1
NCT01860729 Completed Drug: Anacetrapib
Drug: Placebo
Hypercholesterolemia Merck Sharp & Dohme LLC May 13, 2013 Phase 3
生物数据图片
  • Anacetrapib (MK-0859)

    [3H]cholesteryl ester-labeled HDL3 was incubated with unlabeled HDL2 and recombinant human cholesteryl ester transfer protein [(rh)CETP] in the presence of: (A) dalcetrapib, 0.01 µM to 10 µM (n = 3); (B) dalcetrapib, 1 µM and 10 µM, torcetrapib and anacetrapib.J Lipid Res.2010 Dec;51(12):3443-54.
  • Anacetrapib (MK-0859)

    A: Competition of [14C]torcetrapib (0.25 μM) and unlabeled CETP inhibitors for binding to rhCETP. B: Displacement of [14C]dalcetrapib in the presence of reducing agent tris(2-carboxyethyl)phosphine (TCEP) by CETP inhibitors after preincubation.J Lipid Res.2010 Dec;51(12):3443-54.
  • Anacetrapib (MK-0859)

    Schematic depicting action of CETP and proposed effects of dalcetrapib and torcetrapib.J Lipid Res.2010 Dec;51(12):3443-54.


  • Anacetrapib (MK-0859)

  • Anacetrapib (MK-0859)

    A: Human plasma with an endogenous CETP level of 1.25 μg/ml was incubated for 21 h with and without test compounds, dalcetrapib, torcetrapib, and anacetrapib (0.1, 1, 3, and 10 µM).J Lipid Res.2010 Dec;51(12):3443-54.

  • Anacetrapib (MK-0859)

    Comparison of the effect of dalcetrapib, torcetrapib, and anacetrapib on HDL-C·AUC and radioactivity of fecal total sterols as a percentage of injected radioactivity in the hamster macrophage reverse cholesterol transport (RCT) study.J Lipid Res.2010 Dec;51(12):3443-54.
相关产品
联系我们