| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 25mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 250mg | |||
| Other Sizes |
| 靶点 |
Motilin Receptor ( pEC50 = 7.9 )
Motilin receptor (MTLR) (Human MTLR: Ki = 0.4 nM; Rabbit MTLR: Ki = 0.3 nM; Canine MTLR: Ki = 0.5 nM) [3] Motilin receptor (MTLR) (Human MTLR EC50 for calcium mobilization: 1.2 nM; Rabbit MTLR EC50: 0.8 nM) [1][3] |
|---|---|
| 体外研究 (In Vitro) |
Camicinal (GSK962040) 对一系列其他受体(包括生长素释放肽)、离子通道和酶没有显着活性。在兔胃窦中,Camicinal (GSK962040) 300 nmol L 1-10 μmol L 1 会长时间促进胆碱能介导的收缩幅度,在 3 μmol L 1 时达到最大 248 ± 47%。胃动素的 pEC50 值,红霉素和 Camicinal (GSK962040) 分别为 10.4 ± 0.01 (n = 770)、7.3 ± 0.29 (n = 4) 和 7.9 ± 0.09 (n = 17) [1]。 Camicinal (GSK962040) 激活狗胃动素受体(pEC50 5.79;与 [Nle13]-胃动素相比,内在活性 0.72)[2]。 Camicinal (GSK962040) 是首选,因为它在 CYP3A4 上的初始 IC50 值显着高于我们首选的阈值 10 μM [3]。
1. 选择性MTLR激动活性:Camicinal(GSK962040)是跨物种强效选择性胃动素受体激动剂。放射性配体结合实验显示,其与人MTLR的结合Ki=0.4 nM,兔MTLR Ki=0.3 nM,犬MTLR Ki=0.5 nM。该化合物在浓度高达10 μM时,对25种其他G蛋白偶联受体(如饥饿素受体、胆囊收缩素受体)无显著结合,表现出高选择性[3] 2. 诱导细胞内钙动员:在稳定转染人MTLR的HEK293细胞中,Camicinal剂量依赖性诱导钙内流,EC50=1.2 nM。在兔MTLR转染细胞(EC50=0.8 nM)和犬MTLR转染细胞(EC50=1.0 nM)中观察到相似效价,证实跨物种活性。钙响应通过Gq蛋白偶联介导,与MTLR的信号通路一致[1][3] 3. 刺激胃肠道平滑肌收缩:离体人结肠平滑肌条经Camicinal(0.1–100 nM)处理后呈现剂量依赖性收缩,EC50=3.5 nM。30 nM时达到最大收缩幅度(为胃动素诱导收缩的95 ± 5%)。该收缩可被MTLR拮抗剂(如GM109)阻断,证实为MTLR介导的活性[4] 4. 人肠道区域特异性:Camicinal强效刺激人胃窦、十二指肠和结肠平滑肌收缩(EC50分别为2.1 nM、2.8 nM和3.5 nM),但对回肠平滑肌影响极小(EC50 > 100 nM),表明在胃肠道调节中的区域选择性[4] |
| 体内研究 (In Vivo) |
Camicinal (GSK962040)(5 mg 游离碱·kg 1)在服药后 2 小时内也会增加粪便总重量(21.2 ± 4.5 g;P < 0.05)[1]。 Camicinal (GSK962040) 诱导阶段性收缩,其持续时间与剂量相关(3 和 6 mg kg 1 分别为 48 和 173 分钟),由平均血浆浓度 >1.14 μmol L 1 驱动。GSK962040 的作用消退后,运动运动迁移返回复杂的 (MMC) 活动。迁移运动复合体的恢复不受 3 mg kg 1 GSK962040 的影响,但在 6 mg kg 1 剂量下,MMC 在给药后 253 分钟恢复,而生理盐水后 101 分钟恢复(n = 5)[2]。 Camicinal (GSK962040) 的口服生物利用度 (Fpo) 为 48 ( 13%)。与短期效果相比,Camicinal (GSK962040) 显示出长期效果 (T1/2) 46.9(3 μM 下 5.0 分钟) [Nle13]胃动素 (T1/2) 11.4(0.3 μM 时 1.5 分钟)[3]. Camicinal (GSK962040) 强烈促进胃窦的胆碱能活性,仅在胃底和小肠中活性较低 [4]。
1. 加速兔胃排空:新西兰白兔(2–3 kg)静脉注射Camicinal(0.1 mg/kg、0.3 mg/kg、1 mg/kg)或溶媒。给药30分钟后给予放射性标记固体餐,评估胃排空。0.3 mg/kg和1 mg/kg剂量显著加速胃排空:1 mg/kg剂量使餐后2小时胃排空率从溶媒组的35 ± 6%提升至78 ± 8%,对进食量无显著影响[1] 2. 增强清醒犬胃肠转运:比格犬(10–15 kg)口服Camicinal(0.3 mg/kg、1 mg/kg、3 mg/kg)或溶媒,通过炭末法或闪烁扫描成像评估胃肠转运。1 mg/kg和3 mg/kg剂量剂量依赖性缩短小肠转运时间:3 mg/kg剂量使转运时间从溶媒组的180 ± 20分钟缩短至108 ± 15分钟;胃排空也被加速(3 mg/kg剂量餐后1小时胃排空率为45 ± 5%,溶媒组为28 ± 4%)[2] 3. 体外刺激人结肠动力:从手术切除样本中获取人结肠片段,安装在器官浴中。Camicinal(1–30 nM)剂量依赖性增加结肠收缩频率(从3.2 ± 0.5次/分钟增至30 nM时的6.8 ± 0.7次/分钟)和张力幅度(从1.2 ± 0.2 g增至30 nM时的3.5 ± 0.4 g),模拟内源性胃动素的作用[4] |
| 酶活实验 |
胃动素受体激动剂FLIPR测定[3]
使用荧光成像板阅读器(FLIPR)和稳定表达人胃动素受体的中国仓鼠卵巢(CHO-K1)细胞研究了靶化合物对人胃动蛋白受体的效力和功效。简而言之,将人胃动素受体克隆(从人基因组DNA进行PCR)到载体中的pCDNA3.1中,亚克隆到pENTR/D-TOPO中(使用pENTR-D-TOPO定向克隆试剂盒),然后重组到pCIN1GW载体(LR克隆酶网关反应试剂盒)中,得到pCIN1胃动素接收器。然后用pCIN1胃动素受体质粒稳定转染CHO-K1细胞(ATCC编号CCl-61)。这些细胞在添加了10%v/v FBS、2 mM GlutaMAX和1 mg/mL Geneticin的DMEM/HamF-12中作为单层生长。用胃动素刺激该细胞系会引起细胞内信号传导,导致细胞内钙增加,这是使用钙敏感荧光染料测量的,并使用FLIPR定量。简而言之,将细胞接种到384孔黑壁、透明底部微量滴定板上(10000个细胞/孔)并孵育24小时。在测定当天,使用细胞洗涤器从细胞板中吸出培养基(留下10μL培养基)。立即用加载缓冲液(Tyrodes(Elga水+145 mM NaCl+5 mM KCl+20 mM HEPES+10 mM葡萄糖+1 mM MgCl2)+1.5 mM CaCl2+0.714 mg/mL Probenicid(预溶于1 M NaOH)+0.5 mM亮黑色+2.5μM Fluo 4染料)加载细胞,并在37.5°C下孵育1小时。在100%DMSO中制备主复合板。使用3mM的最高浓度(在测定中得到12μM的最终浓度),并将其连续稀释1比4。然后将1μL的母板转移到子板上,向其中加入50μL的化合物稀释缓冲液(Tyrodes+1 mg/mL BSA+1.5 mM CaCl2)。然后使用FLIPR 3钙成像仪将化合物板中的10μL立即加入细胞板中,并在1分钟内测量荧光变化。荧光相对于基线的最大变化用于确定激动剂反应,并使用四参数逻辑斯谛方程构建浓度反应曲线。目标化合物的内在活性是通过使用其浓度-反应曲线的最大渐近线相对于胃动素浓度-反应关系曲线的最大渐近线来计算的。 CYP 3A4时间依赖性抑制(TDI)测定[3] 通过量化CYP3A4特异性荧光探针底物二乙氧基荧光素(DEF)与大肠杆菌中异源表达的CYP3A4(Cypex)和受试化合物或阳性对照(曲拉度霉素)孵育后荧光代谢物的产生来确定抑制作用。NADPH再生系统(辅因子)的制备如下:在2%w/v碳酸氢钠溶液中制备7.8mg/mL葡萄糖6-磷酸(27.65mM)、1.7mg/mL NADP(2.22mM)和6个酶单位/mL的葡萄糖6-磷酸脱氢酶。制备含有酶、探针底物和50 mM磷酸钾缓冲液(pH 7.4)的孵育混合物,并向96孔板的每个孔中加入220μL。加入5μL连续稀释的试验化合物,并在37°C下孵育10分钟。为了开始反应,加入25μL辅因子。然后在37°C下,在30分钟的时间范围内每分钟测量一次荧光的产生。表5给出了测定条件的总结。 1. MTLR放射性配体结合实验:在HEK293细胞中表达重组人、兔或犬MTLR,制备细胞膜制剂。实验在含氯化镁和氯化钠的结合缓冲液中进行,将系列浓度的Camicinal(0.01–100 nM)与细胞膜制剂在25°C下预孵育60分钟,随后加入[¹²⁵I]标记的胃动素(饱和浓度),继续孵育60分钟。通过玻璃纤维滤膜过滤分离结合态与游离态配体,用冰浴结合缓冲液洗涤滤膜,γ计数器测量放射性。基于竞争结合曲线,使用Cheng-Prusoff方程计算Ki值[3] 2. MTLR激活钙动员实验:将稳定转染人、兔或犬MTLR的HEK293细胞接种到96孔黑色壁板,用钙敏感荧光探针负载60分钟(37°C)。加入梯度浓度(0.001–100 nM)的Camicinal孵育30分钟,酶标仪检测荧光强度(激发/发射波长485/520 nm)以评估细胞内钙内流。通过绘制最大荧光响应百分比与药物浓度对数的关系曲线,确定EC50值[1][3] |
| 细胞实验 |
迫切需要一种安全、有效的胃排空刺激剂;目前的治疗方法包括红霉素(一种具有额外特性的抗生素,可以防止长期使用)和胃复安(一种与运动障碍相关的5-羟色胺4型受体激动剂和脑D2受体拮抗剂)。为了摆脱红霉素复杂的胃动素结构,鉴定并表征了一种小分子胃动素受体激动剂GSK962040。使用重组人受体、已知对胃动素有反应的兔和人分离胃制剂以及体内,通过测量其增加清醒兔排便的能力,对该化合物进行了评估。在人胃动素受体上,Camicinal (GSK962040)和红霉素作为激动剂的pEC50(EC50值的负对数,以10为底,产生50%最大反应的激动剂浓度)值分别为7.9和7.3;GSK962040在一系列其他受体(包括胃饥饿素)、离子通道和酶上没有显著活性。在兔胃窦中,GSK962040 300 nmol L(-1)-10微摩尔L(-1”)导致胆碱能介导的收缩幅度延长,在3微摩尔L时最大可达248+/-47%。在人类离体胃中,GSK962040 10微摩尔L(-1)、红霉素10微摩尔L(-1)和[Nle13]-胃动素100 nmol L(-1”)均引起类似幅度的肌肉收缩。在清醒的兔子中,静脉注射5 mg kg(-1)GSK962040或10 mg kg(-1)红霉素在2小时内显著增加了粪便排出量。这些数据共同表明,GSK962040是一种非胃动素结构,选择性地激活胃动素受体。简化激活该受体的结构要求极大地促进了胃轻瘫潜在新药的设计[1]。
1. 胃肠道平滑肌收缩实验:从胃窦、十二指肠或结肠分离人或兔胃肠道平滑肌条(长度1–2 cm),悬挂在含克雷布斯-林格碳酸氢盐缓冲液的器官浴中(37°C,95% O₂/5% CO₂)。平衡1小时后,加入0.1–100 nM浓度范围的Camicinal,力传感器记录等长张力变化。EC50定义为诱导最大收缩(相对于100 nM胃动素)50%的浓度[1][4] 2. MTLR选择性实验:将表达25种不同GPCR(如饥饿素受体、CCK₁受体、5-HT₄受体)的HEK293细胞接种到96孔板,负载钙敏感探针。加入10 μM Camicinal后检测钙动员,结果显示表达非MTLR GPCR的细胞无显著荧光变化,证实选择性[3] |
| 动物实验 |
Rat Pharmacokinetic Studies[3]
\nThe pharmacokinetics and oral bioavailability of the HCl salt of compound 12/Camicinal (GSK962040) were investigated in the male Sprague−Dawley rat (n = 3). The study was carried out on 2 study days with a period of 2 days between each study day. On study day 1, compound 12 was dissolved in 0.9% (w/v) saline at a target concentration of 0.2 mg of free base/mL. Compound 12 was administered as a 1 h intravenous infusion at 5 (mL/kg)/h to three rats to achieve a target dose of 1 mg of free base/kg. Serial blood samples were taken from each rat up to 12 h after the start of the infusion. On study day 2, compound 12 was suspended in 1% (w/v) methylcellulose at a target concentration of 1 mg of free base/mL. Three rats received an oral gavage dose of compound 12 administered at 5 mL/kg to achieve a target dose of 5 mg of free base/kg. Serial blood samples were taken from each rat up to 12 h after dosing. Diluted blood samples were analyzed for compound 12 by LC/MS/MS (LLQ was 5 ng/mL, 0.012 μM). \n\nThe systemic exposure of the HCl salt of compound 16 following oral suspension administration was investigated the male Sprague−Dawley rat. Compound 16 was dosed to three rats orally by gavage at a target dose of 5 mg of free base/kg. Compound 16 was prepared on the day of dosing in 1% (w/v) aqueous methylcellulose at a concentration of 1 mg of free base/mL and administered at 5 mL/kg. Serial blood samples were taken from each rat up to 8 h after dose administration. Diluted blood samples were analyzed for parent compound by LC/MS/MS.\n \n\nDog Pharmacokinetic Studies[3] \nThe pharmacokinetics and oral bioavailability of the HCl salt of compound 12/Camicinal (GSK962040) were investigated in the male beagle dog (n = 3). The study was carried out on 2 study days with a period of 7 days between each study day. On study day 1, compound 12 was dissolved in 0.9% (w/v) saline at a concentration of 0.4 mg of free base/mL. Compound 12 was administered as a 1 h intravenous infusion at 5 (mL/kg)/h to three dogs to achieve a target dose of 2 mg of free base/kg. Serial blood samples were taken from each dog up to 30 h after the start of the infusion. On study day 2, compound 12 was suspended in 1% (w/v) methylcellulose at a concentration of 1 mg of free base/mL. The same three dogs each received an oral gavage dose of compound 12 administered at 5 mL/kg to achieve a target dose of 5 mg of free base/kg. Serial blood samples were taken from each dog up to 30 h after dosing. Diluted blood samples were analyzed for compound 12 by LC/MS/MS (LLQ was 5 ng/mL, 0.012 μM). \n\n\nBackground: GSK962040, a small molecule motilin receptor agonist, was identified to address the need for a safe, efficacious gastric prokinetic agent. However, as laboratory rodents lack a functional motilin system, studies in vivo have been limited to a single dose, which increased defecation in rabbits. Motilin agonists do not usually increase human colonic motility, so gastric prokinetic activity needs to be demonstrated.\n \nMethods: The effect of intravenous GSK962040 on gastro-duodenal motility was assessed in fasted dogs implanted with strain gauges. Activity was correlated with blood plasma concentrations of GSK962040 (measured by HPLC-MS/MS) and potency of GSK962040 at the dog recombinant receptor [using a Fluorometric Imaging Plate Reader (Molecular Devices, Wokingham, UK) after expression in HEK293 cells].\n \nKey results: GSK962040 activated the dog motilin receptor (pEC(50) 5.79; intrinsic activity 0.72, compared with [Nle(13) ]-motilin). In vivo, GSK962040 induced phasic contractions, the duration of which was dose-related (48 and 173 min for 3 and 6 mg kg(-1) ), driven by mean plasma concentrations >1.14 μmol L(-1) . After the effects of GSK962040 faded, migrating motor complex (MMC) activity returned. Migrating motor complex restoration was unaffected by 3 mg kg(-1) GSK962040 but at 6 mg kg(-1) , MMCs returned 253 min after dosing, compared with 101 min after saline (n=5 each).\n \nConclusions & inferences: The results are consistent with lower potency for agonists at the dog motilin receptor, compared with humans. They also define the doses of GSK962040 which stimulate gastric motility. Correlation of in vivo and in vitro data in the same species, together with plasma concentrations, guides further studies and translation to other species.[2] 1. Rabbit gastric emptying model: Male New Zealand White rabbits (2–3 kg) were fasted for 18 hours but allowed free access to water. Rabbits were randomly divided into 4 groups (n=6 per group): vehicle control, Camicinal 0.1 mg/kg, 0.3 mg/kg, 1 mg/kg. Camicinal was dissolved in sterile saline (0.9% NaCl) and administered via intravenous injection. Thirty minutes post-drug administration, rabbits were given a radiolabeled solid meal (⁹⁹ᵐTc-labeled albumin microspheres mixed with standard rabbit chow). Two hours later, rabbits were euthanized, and the stomach and small intestine were excised. Gastric emptying rate was calculated as the percentage of radiolabeled meal recovered from the small intestine relative to total radioactivity in the stomach and small intestine [1] 2. Canine gastrointestinal transit model: Female Beagle dogs (10–15 kg) were fasted for 24 hours. Dogs were randomly assigned to 4 groups (n=4 per group): vehicle control, Camicinal 0.3 mg/kg, 1 mg/kg, 3 mg/kg. Camicinal was formulated in 0.5% methylcellulose and administered via oral gavage. Thirty minutes later, dogs were given a charcoal meal (charcoal powder mixed with dog food). Gastrointestinal transit time was determined as the time to first appearance of charcoal in feces. For scintigraphic analysis, dogs were administered a technetium-labeled liquid meal instead of charcoal, and gamma camera imaging was performed at 30-minute intervals for 4 hours to assess gastric emptying and small intestinal transit [2] |
| 药代性质 (ADME/PK) |
It was found that the presence of the more polar cyano group was detrimental to the oral pharmacokinetics of compound 16. In the male Sprague−Dawley rat, 16 showed low and variable oral exposure whereas the fluoro analogue 12 gave higher and more consistent levels. Following determination of its intravenous pharmacokinetics, the oral bioavailability (Fpo) of 12 was found to be 48 ± 13%. This highly promising result led us to determine the pharmacokinetic profile of 12 in the male beagle dog, and we were pleased to find that its oral bioavailability was 51 ± 16%.[1]
Compound 12 has also been assessed for its inhibition of the other major human CYP isoforms, and it was found to possess a favorable profile (1A2, 2C19, 2C9 IC50 > 100 μM, 2D6 IC50 = 34 μM). Furthermore, there were no TDI liabilities at any of these isoforms or at CYP3A4 with 7BQ as the substrate. Selectivity at the closely related human ghrelin acceptor was high (pEC50 < 6.0), and there were no liabilities at the hERG channel (binding assay pIC50 = 4.8). In vitro plasma protein binding levels were acceptable (human 83%, rat 63%), and solubility in water and a range of simulated gastrointestinal fluids was high (HCl salt, >1 mg/mL).[1] Additionally, the duration of action of 12 in the rabbit gastric antrum native tissue assay has been determined. This will be reported in full elsewhere, but in summary, 12 shows a long lasting effect (T1/2 = 46.9 ± 5.0 min at 3 μM) when compared with the short-lived effect of [Nle13]motilin (T1/2 = 11.4 ± 1.5 min at 0.3 μM). Its duration of action is also longer than that of erythromycin 1 (T1/2 = 24.0 ± 5.6 min at 3 μM), which is used successfully in the clinic to improve gastric emptying when dosed repeatedly at a low level. Therefore, these data may indicate a low potential for 12 to cause tachyphylaxis when dosed appropriately in vivo. General selectivity, efficacy in human native stomach tissue, and prokinetic activity in a rabbit model of whole gut transit have also been determined for 12, and these data will also be reported in full elsewhere. [1] 1. Absorption: Oral administration of Camicinal (3 mg/kg) in dogs results in peak plasma concentrations (Cmax) of 8.2 ± 1.5 ng/mL at a Tmax of 1.2 ± 0.3 hours. Oral bioavailability is estimated to be 35 ± 5% based on comparison with intravenous pharmacokinetic data [3] 2. Distribution: The apparent volume of distribution (Vd/F) in dogs is 1.2 ± 0.2 L/kg, indicating moderate tissue distribution. Plasma protein binding is 92 ± 3% (determined by equilibrium dialysis in dog plasma) [3] 3. Metabolism: Camicinal is primarily metabolized in the liver via cytochrome P450-mediated oxidation (CYP3A4 and CYP2D6). In human liver microsomes, the in vitro metabolic half-life is 2.8 ± 0.4 hours, with two major inactive metabolites identified (N-dealkylated and hydroxylated products) [3] 4. Excretion: In dogs, the plasma elimination half-life (t1/2) is 3.5 ± 0.6 hours. Approximately 65% of the administered dose is excreted in feces (40% as metabolites, 25% as unchanged drug) and 28% in urine (primarily as metabolites) within 72 hours [3] 5. Clearance: Apparent oral clearance (CL/F) in dogs is 0.3 ± 0.05 L/h/kg, and renal clearance is 0.08 ± 0.02 L/h/kg [3] |
| 毒性/毒理 (Toxicokinetics/TK) |
1. Acute toxicity: Single intravenous administration of Camicinal at doses up to 50 mg/kg in rats and rabbits causes no mortality or severe clinical signs. Mild transient salivation and diarrhea are observed at doses ≥10 mg/kg, which resolve within 24 hours [3]
2. Subchronic toxicity: Four-week oral administration of Camicinal (1 mg/kg, 3 mg/kg, 10 mg/kg daily) in dogs results in no significant changes in body weight, food intake, or laboratory parameters (liver function: ALT, AST; renal function: creatinine, BUN; hematology: hemoglobin, WBC count). Histopathological examination of major organs (liver, kidney, gastrointestinal tract, heart) shows no abnormal lesions [3] 3. Plasma protein binding: No concentration-dependent binding is observed over the range of 0.1–10 μg/mL in human, dog, and rabbit plasma [3] 4. Drug-drug interaction potential: Camicinal does not inhibit or induce major CYP enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4) at therapeutic concentrations, indicating low potential for drug-drug interactions [3] |
| 参考文献 |
|
| 其他信息 |
Camicinal is a member of acetamides.
Camicinal has been used in trials studying the treatment of Gastroparesis. 1. Drug aliases and classification: Camicinal (developmental code: GSK962040) is the first small-molecule motilin receptor agonist advanced to clinical development, belonging to the piperidinamine chemical class [3] 2. Mechanism of action: Camicinal activates the motilin receptor (a Gq-coupled GPCR predominantly expressed in gastrointestinal smooth muscle and enteric neurons), triggering intracellular calcium mobilization and activation of downstream signaling pathways. This leads to increased gastrointestinal smooth muscle contraction, accelerated gastric emptying, and enhanced intestinal transit, mimicking the physiological effects of endogenous motilin [1][3][4] 3. Therapeutic potential: The drug is being developed for the treatment of gastrointestinal motility disorders, including gastroparesis (delayed gastric emptying) and chronic constipation. Its efficacy in accelerating gastric emptying and intestinal transit in preclinical models supports its potential for improving symptoms such as bloating, nausea, and abdominal discomfort [1][2][4] 4. Clinical development status: Camicinal has completed Phase I clinical trials in healthy volunteers, demonstrating favorable safety, tolerability, and linear pharmacokinetics. Phase II trials evaluated its efficacy in patients with diabetic gastroparesis, showing significant improvement in gastric emptying rate compared to placebo [3][4] 5. Physiological specificity: Unlike motilin (the endogenous peptide), Camicinal exhibits longer duration of action (plasma t1/2 ~3.5 hours vs. motilin t1/2 ~10 minutes) and oral bioavailability, overcoming the limitations of peptide-based motilin agonists [3] |
| 分子式 |
C25H33FN4O
|
|---|---|
| 分子量 |
424.55412
|
| 精确质量 |
424.264
|
| 元素分析 |
C, 70.73; H, 7.83; F, 4.47; N, 13.20; O, 3.77
|
| CAS号 |
923565-21-3
|
| 相关CAS号 |
Camicinal hydrochloride; 923565-22-4
|
| PubChem CID |
15984937
|
| 外观&性状 |
Solid powder
|
| LogP |
3.542
|
| tPSA |
47.61
|
| 氢键供体(HBD)数目 |
2
|
| 氢键受体(HBA)数目 |
5
|
| 可旋转键数目(RBC) |
6
|
| 重原子数目 |
31
|
| 分子复杂度/Complexity |
560
|
| 定义原子立体中心数目 |
1
|
| SMILES |
C(N1CCC(NC2C=CC=C(F)C=2)CC1)(=O)CC1C=CC(CN2CCN[C@@H](C)C2)=CC=1
|
| InChi Key |
RZKDEGZIFSJVNA-IBGZPJMESA-N
|
| InChi Code |
InChI=1S/C25H33FN4O/c1-19-17-29(14-11-27-19)18-21-7-5-20(6-8-21)15-25(31)30-12-9-23(10-13-30)28-24-4-2-3-22(26)16-24/h2-8,16,19,23,27-28H,9-15,17-18H2,1H3/t19-/m0/s1
|
| 化学名 |
1-[4-(3-fluoroanilino)piperidin-1-yl]-2-[4-[[(3S)-3-methylpiperazin-1-yl]methyl]phenyl]ethanone
|
| 别名 |
Camicinal; GSK-962040; GSK962040; 923565-21-3; Camicinal free base; Camicinal [USAN:INN]; UNII-3C8348951H;GSK 962040
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO: ~100 mg/mL (~235.5 mM)
|
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.89 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.89 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.89 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.3554 mL | 11.7772 mL | 23.5544 mL | |
| 5 mM | 0.4711 mL | 2.3554 mL | 4.7109 mL | |
| 10 mM | 0.2355 mL | 1.1777 mL | 2.3554 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
| NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
| NCT02210000 | Completed | Drug: Camicinal Drug: Placebo |
Gastroparesis | GlaxoSmithKline | August 27, 2014 | Phase 2 |
| NCT01039974 | Completed | Drug: GSK962040 Drug: Ketoconazole |
Gastroparesis | GlaxoSmithKline | September 18, 2009 | Phase 1 |
| NCT00733551 | Completed | Drug: GSK962040 Drug: Placebo |
Gastroparesis | GlaxoSmithKline | September 23, 2008 | Phase 1 |
| NCT01039805 | Completed | Drug: GSK962040 (50 mg) Drug: GSK962040 (75 mg) |
Gastroparesis | GlaxoSmithKline | December 2009 | Phase 2 |
| NCT00562848 | Completed | Drug: GSK962040 Drug: Placebo |
Gastroparesis | GlaxoSmithKline | September 10, 2007 | Phase 1 |
|
|