Ceftazidime (GR20263)

别名: Fortaz; Fortum; GR 20263; GR-20263; GR20263; LY 139381; LY-139381; LY139381; Tazidime; Ceftazidime anhydrous; Ceftazidime Pentahydrate; 头孢他啶;复达欣; 头孢他啶 EP标准品;头孢他啶(含碳酸钠);头孢他啶(注射用);头孢他啶峰鉴别 EP标准品;(6R,7R)-7-[[(2-氨基-4-噻唑基)-[(1-羧基-1-甲基乙氧基)亚氨基]乙酰基]氨基]-2-羧基-8-氧代-5-硫杂-1-氮杂双环[4.2.0]辛-2-烯-3-甲基吡啶鎓内盐;凯复定;噻甲酸肟头孢菌素;头孢 塔齐定;头孢齐定;头孢噻甲羧肟;头孢他定
目录号: V6614 纯度: ≥98%
头孢他啶 (GR-20263; GR20263;LY-139381; Tazidime;Fortaz, Tazicef; Avycaz) 是一种有效的第三代广谱 β-内酰胺抗生素,被批准用作治疗癌症患者发热性中性粒细胞减少症的抗菌剂。
Ceftazidime (GR20263) CAS号: 72558-82-8
产品类别: Bacterial
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1g
5g
10g
Other Sizes

Other Forms of Ceftazidime (GR20263):

  • 头孢他啶水合物
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
头孢他啶 (GR-20263; GR20263; LY-139381; Tazidime; Fortaz, Tazicef; Avycaz) 是一种有效的第三代广谱 β-内酰胺抗生素,被批准用作治疗发热性中性粒细胞减少症患者的抗菌剂患有癌症。它通过静脉内或肌肉内施用。作为一类,头孢菌素具有对抗革兰氏阳性和革兰氏阴性细菌的活性。前几代的活性平衡倾向于革兰氏阳性生物;后续几代头孢菌素有更多的革兰氏阴性菌覆盖率。头孢他啶是此类药物中少数具有抗假单胞菌活性的药物之一。
生物活性&实验参考方法
靶点
β-lactam
体外研究 (In Vitro)
针对铜绿假单胞菌菌株,头孢他啶(0–8 μg/mL,约 24 小时)表现出抗菌和抗生物膜特性[2]。
头孢他啶在浓度为 0– 时对嗜麦芽杆菌菌株具有抑制作用。 40 μg/mL,大约 18-20 小时[3]。
体内研究 (In Vivo)
在小鼠大腿感染模型中,头孢他啶(注射液输注2 h,每8 h 2 000 mg,持续24 h)可适度降低细菌密度[4]。
细胞实验
细胞系:铜绿假单胞菌菌株 (PAO1、PA1、PA2)
浓度:约 0-8 µg/mL
孵育时间:24 小时
结果:显示 MIC 值为 2-4 µg/mL抗菌和抗生物膜活性。
动物实验
Animal Model: Murine thigh infection model[4]
Dosage: 2000 mg
Administration: 2 h infusion of injection, every 8 h for 24 h.
Result: decreased bacterial density when compared to the isogenic strain of NDM (New Delhi metallo-β-lactamase).
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Ceftazidime administered intravenously in healthy males produced mean Cmax values of between 42 and 170 μg/mL for doses between 500 mg and 2 g, and are reached immediately following the end of the infusion period. The Cmax for 1 g of ceftazidime administered intramuscularly is attained approximately one hour following injection and is between 37 and 43 mg/L. Following intramuscular administration of 500 mg and 1 g of ceftazidime, the serum concentration remained above 4 μg/mL for six and eight hours, respectively. Ceftazidime Cmax and AUC show linear proportionality to the dose over the therapeutic range. In individuals with normal renal function, ceftazidime given intravenously every eight hours for 10 days as either 1 or 2 g doses showed no accumulation.
Approximately 80% to 90% of an intramuscular or intravenous dose of ceftazidime is excreted unchanged by the kidneys over a 24-hour period. When administered intravenously, 50% of the dose appears in the urine within two hours, with another 32% of the dose appearing by eight hours post-administration.
Ceftazidime has a volume of distribution of 15-20 L.
The mean renal clearance of ceftazidime in healthy subjects ranges from 72 to 141 mL/min while the calculated plasma clearance is approximately 115 mL/min.
Metabolism / Metabolites
Ceftazidime is not appreciably metabolized.
Biological Half-Life
Ceftazidime has an elimination half-life of 1.5-2.8 hours in healthy subjects. As ceftazidime is primarily renally excreted, its half-life is significantly prolonged in patients with renal impairment. In patients with creatinine clearance < 12 mL/min, the half-life is prolonged to between 14 and 30 hours.
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Limited information indicates that ceftazidime produces low levels in milk that are not expected to cause adverse effects in breastfed infants. Avibactam has not been studied in nursing mothers. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with cephalosporins, but these effects have not been adequately evaluated. Ceftazidime-avibactam is acceptable in nursing mothers.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
◉ Summary of Use during Lactation
Limited information indicates that ceftazidime produces low levels in milk that are not expected to cause adverse effects in breastfed infants. Occasionally disruption of the infant's gastrointestinal flora, resulting in diarrhea or thrush have been reported with cephalosporins, but these effects have not been adequately evaluated. Ceftazidime and is acceptable in nursing mothers.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Ceftazidime plasma protein binding ranges from 5-22.8% (typically less than 10%) and is independent of concentration. Ceftazidime has been shown to bind human serum albumin.
参考文献

[1]. Ceftazidime. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985 Feb;29(2):105-61.

[2]. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 2021 Dec 16;21(1):347.

[3]. Avibactam potentiated the activity of both ceftazidime and aztreonam against S. maltophilia clinical isolates in vitro. BMC Microbiol. 2021 Feb 22;21(1):60.

[4]. Unexpected in vivo activity of ceftazidime alone and in combination with avibactam against New Delhi metallo-β-lactamase-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2014 Nov;58(11):7007-9.

其他信息
Ceftazidime is a third-generation cephalosporin antibiotic bearing pyridinium-1-ylmethyl and {[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-{[(2-carboxypropan-2-yl)oxy]imino}acetamido groups at positions 3 and 7, respectively, of the cephem skeleton. It has a role as an antibacterial drug, an EC 2.4.1.129 (peptidoglycan glycosyltransferase) inhibitor and a drug allergen. It is a cephalosporin and an oxime O-ether. It is a conjugate acid of a ceftazidime(1-).
Bacteria possess a cell wall comprising a glycopeptide polymer commonly known as peptidoglycan, which is synthesized and remodelled through the action of a family of enzymes known as "penicillin-binding proteins" (PBPs). β-lactam antibiotics, including cephalosporins, are PBP inhibitors that, through inhibition of essential PBPs, result in impaired cell wall homeostasis, loss of cell integrity, and ultimately bacterial cell death. Ceftazidime is a third-generation cephalosporin with broad-spectrum antibacterial activity, including against some treatment-resistant bacteria such as Pseudomonas aeruginosa. Ceftazidime was approved by the FDA on July 19, 1985, and is currently available either alone or in combination with the non-β-lactam β-lactamase inhibitor [avibactam] to treat a variety of bacterial infections.
Ceftazidime has been reported in Apis cerana with data available.
Ceftazidime is a beta-lactam, third-generation cephalosporin antibiotic with bactericidal activity. Ceftazidime binds to and inactivates penicillin-binding proteins (PBP) located on the inner membrane of the bacterial cell wall. PBPs participate in the terminal stages of assembling the bacterial cell wall, and in reshaping the cell wall during cell division. Inactivation of PBPs interferes with the cross-linkage of peptidoglycan chains necessary for bacterial cell wall strength and rigidity. This results in the weakening of the bacterial cell wall and causes cell lysis. Compared to the second and first generation cephalosporins, ceftazidime is more active against gram-negative bacteria and less active against gram-positive bacteria. Ceftazidine also crosses the blood-brain barrier and reaches therapeutic concentrations in the central nervous system (CNS).
Ceftazidime Anhydrous is an anhydrous form of ceftazidime, a third-generation, beta-lactam, cephalosporin antibiotic with bactericidal activity.
Semisynthetic, broad-spectrum antibacterial derived from CEPHALORIDINE and used especially for Pseudomonas and other gram-negative infections in debilitated patients.
Drug Indication
Ceftazidime is indicated for the treatment of lower respiratory tract infections, skin and skin structure infections, urinary tract infections, bacterial septicemia, bone and joint infections, gynecologic infections, intra-abdominal infections (including peritonitis), and central nervous system infections (including meningitis) caused by susceptible bacteria. Ceftazidime is indicated in combination with [avibactam] to treat infections caused by susceptible Gram-negative organisms, including complicated intra-abdominal infections (cIAI), in conjunction with [metronidazole], and complicated urinary tract infections (cUTI), including pyelonephritis, in patients aged three months and older. This combination is also indicated to treat hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) in patients aged 18 years and older. In all cases, to mitigate the risk of bacterial resistance and preserve clinical efficacy, ceftazidime should only be used for infections that are confirmed or strongly suspected to be caused by susceptible bacterial strains.
FDA Label
Mechanism of Action
The bacterial cell wall, which is located at the periphery of Gram-positive bacteria and within the periplasm of Gram-negative bacteria, comprises a glycopeptide polymer synthesized through cross-linking of glycans to peptide stems on alternating saccharides, which is known commonly as peptidoglycan. Cell wall formation, recycling, and remodelling require numerous enzymes, including a family of enzymes with similar active site character despite distinct and sometimes overlapping roles as carboxypeptidases, endopeptidases, transpeptidases, and transglycosylases, known as "penicillin-binding proteins" (PBPs). The number of PBPs differs between bacteria, in which some are considered essential and others redundant. In general, inhibition of one or more essential PBPs results in impaired cell wall homeostasis, loss of cell integrity, and is ultimately bactericidal. Ceftazidime is a semisynthetic third-generation cephalosporin with broad activity against numerous Gram-negative and some Gram-positive bacteria. Like other β-lactam antibiotics, ceftazidime exhibits its bactericidal effect primarily through direct inhibition of specific PBPs in susceptible bacteria. _In vitro_ experiments in Gram-negative bacteria such as _Escherichia coli_, _Pseudomonas aeruginosa_, _Acinetobacter baumannii_, and _Klebsiella pneumoniae_ suggest that ceftazidime primarily binds to PBP3, with weaker binding to PBP1a/1b and PBP2 as well; although binding to other PBPs, such as PBP4, is detectable, the concentrations required are much greater than those achieved clinically. Similarly, ceftazidime showed binding to _Staphylococcus aureus_ PBP 1, 2, and 3 with a much lower affinity for PBP4. Recent data for _Mycobacterium abcessus_ suggest that ceftazidime can inhibit PonA1, PonA2, and PbpA at intermediate concentrations.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
精确质量
546.099
元素分析
C, 48.34; H, 4.06; N, 15.38; O, 20.49; S, 11.73
CAS号
72558-82-8
相关CAS号
Ceftazidime pentahydrate;78439-06-2
PubChem CID
5481173
外观&性状
White to off-white solid powder
熔点
103-113
LogP
-2.84
tPSA
244.76
氢键供体(HBD)数目
3
氢键受体(HBA)数目
12
可旋转键数目(RBC)
8
重原子数目
37
分子复杂度/Complexity
1020
定义原子立体中心数目
2
SMILES
S1C([H])([H])C(C([H])([H])[N+]2C([H])=C([H])C([H])=C([H])C=2[H])=C(C(=O)[O-])N2C([C@@]([H])([C@]12[H])N([H])C(/C(/C1=C([H])SC(N([H])[H])=N1)=N\OC(C(=O)O[H])(C([H])([H])[H])C([H])([H])[H])=O)=O
InChi Key
ORFOPKXBNMVMKC-LGJNPRDNSA-N
InChi Code
InChI=1S/C22H22N6O7S2/c1-22(2,20(33)34)35-26-13(12-10-37-21(23)24-12)16(29)25-14-17(30)28-15(19(31)32)11(9-36-18(14)28)8-27-6-4-3-5-7-27/h3-7,10,14,18H,8-9H2,1-2H3,(H4-,23,24,25,29,31,32,33,34)/b26-13+
化学名
(6R,7R)-7-[[(2Z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2-carboxypropan-2-yloxyimino)acetyl]amino]-8-oxo-3-(pyridin-1-ium-1-ylmethyl)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate
别名
Fortaz; Fortum; GR 20263; GR-20263; GR20263; LY 139381; LY-139381; LY139381; Tazidime; Ceftazidime anhydrous; Ceftazidime Pentahydrate;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : 25 ~100 mg/mL (~182.96 mM)
DMSO : ~2 mg/mL ( ~3.65 mM )
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (3.81 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (3.81 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (3.81 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.08 mg/mL (3.81 mM)

配方 5 中的溶解度: 100 mg/mL (182.96 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶.

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02837835 COMPLETED Drug: ceftazidime
Drug: ceftazidime
Pneumonia CHU de Reims 2005-03 Phase 3
NCT03881800 COMPLETED Other: titration- blood sample Ceftazidime Treatment
Burned Children
Assistance Publique - Hôpitaux de Paris 2020-02-19
NCT01644643 COMPLETEDWITH RESULTS Drug: Ceftazidime - Avibactam ( CAZ-AVI)
Drug: Best Available Therapy
Drug: Metronidazole
Complicated Intra-abdominal Infection
Complicated Urinary Tract Infection
Pfizer 2013-01 Phase 3
NCT01784445 COMPLETED Drug: Ceftazidime Pancreatitis University Hospital Rijeka 2013-06 Phase 4
NCT03634904 UNKNOWN STATUS Drug: Drug bood sampling Ceftazidime
Bacterial Infections
Renal Failure Chronic Requiring Hemodialysis
Centre Hospitalier Universitaire de Charleroi 2018-09-15 Not Applicable
生物数据图片
  • The results of the P. aeruginosa attachment to the surface of microplate wells containing 1× MIC and 1/2× MIC concentrations of ceftazidime in PAO1 (A), PA1 (B), and PA2 (C). The plates were incubated for 1, 2, or 4 h at 37 °C. Data were normalized to the mean value of the control, which was set at 100%. The error bars indicate the standard deviations between bacteria. Results were expressed as percentage of biofilm formed with respect to control. The statistical significance of the data was determined by an analysis of variance (ANOVA) test followed by the Tukey-Kramer multiple comparison test. Significance was accepted when the P-value was < 0.05 (****P < 0.0001). MIC: Minimum inhibitory concentration.[2]. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 2021 Dec 16;21(1):347.
  • Reduction in the P. aeruginosa biofilm formation by PAO1, PA1, and PA2 with different concentrations of ceftazidime (A) and cellulase (B). The error bars indicate the standard deviations between strains. The microplates were incubated for 24 h at 37 °C. Data were normalized to the mean value of the control, which was set at 100%. The error bars indicate the standard deviations between bacteria. Results were expressed as percentage of biofilm biomass formed with respect to control. The statistical significance of the data was determined by an analysis of variance (ANOVA) test followed by the Tukey-Kramer multiple comparison test. Significance was accepted when the P-value was < 0.05 (****P < 0.0001, **P < 0.01). HI: Heat-inactivated; MIC: Minimum inhibitory concentration.[2]. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 2021 Dec 16;21(1):347.
  • Reduction of P. aeruginosa biofilm formation by combination of ceftazidime (1/16× MIC) and different concentrations of cellulase in PAO1, PA1, and PA2. The error bars indicate the standard deviations between strains. The microplates were incubated for 24 h at 37 °C. Data were normalized to the mean value of the control, which was set at 100%. The error bars indicate the standard deviations between bacteria. Results were expressed as percentage of biofilm biomass formed with respect to control. The statistical significance of the data was determined by an analysis of variance (ANOVA) test followed by the Tukey-Kramer multiple comparison test. Significance was accepted when the P-value was < 0.05 (****P < 0.0001). MIC: Minimum inhibitory concentration.[2]. In vitro activities of cellulase and ceftazidime, alone and in combination against Pseudomonas aeruginosa biofilms. BMC Microbiol. 2021 Dec 16;21(1):347.
联系我们