CGP 57380

别名: CGP57380; CGP-57380; MNK1 Inhibitor; N3-(4-fluorophenyl)-1h-pyrazolo[3,4-d]pyrimidine-3,4-diamine; CGP57380; 3-N-(4-fluorophenyl)-2H-pyrazolo[3,4-d]pyrimidine-3,4-diamine; CHEMBL1240885; CGP 57380 N3-(4-氟苯基)-1H-吡唑并(3,4-d)嘧啶-3,4-二胺; N3-(4-氟苯基)-1H-吡唑并[3,4-D]嘧啶-3,4-二胺
目录号: V1941 纯度: ≥98%
CGP57380 (CGP-57380) 是一种有效的、细胞渗透性的、选择性的 MNK1 抑制剂,具有抗癌活性。
CGP 57380 CAS号: 522629-08-9
产品类别: MNK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

产品描述
CGP57380 (CGP-57380) 是一种有效的、细胞渗透性的、选择性的 MNK1 抑制剂,具有抗癌活性。它的 IC50 为 2.2 μM,可阻断 MNK1,但对 p38、JNK1、ERK1 和 -2、PKC 或 c-Src 样激酶没有抑制作用。 CGP 57380 (10 μM) 可阻止 293 细胞中 eIF4E 对胎牛血清 (FCS)、亚砷酸盐、茴香霉素、PMA 或肿瘤坏死因子-α 的磷酸化。 CGP 57380 还可增强帽依赖性报告基因 rluc。当用于细胞测定中抑制 eIF4E 磷酸化时,CGP 57380 的 IC50 值为 3 μM。 CGP 57380 以剂量依赖性方式降低大鼠血管平滑肌细胞中的蛋白质合成、血管紧张素 II 诱导的 VSMC 肥大和 eIF4E 磷酸化。
生物活性&实验参考方法
靶点
MNK1 (IC50 = 2.2 μM)
体外研究 (In Vitro)
CGP57380 在细胞测定中抑制 eIF4E 磷酸化,IC50 约为 3 μM。使用 CGP57380 去磷酸化 eIF4E 会导致 293 细胞表达更多帽依赖性报告基因。 [1] CGP57380 以剂量依赖性方式抑制蛋白质合成、VSMC 肥大和 Ang II 刺激的 eIF4E 磷酸化。 [2]在小鼠胚胎成纤维细胞 (MEF) 中,CGP57380 使野生型细胞更容易受到血清撤除引起的细胞凋亡的影响。 [3] CGP57380 阻止 BC 祖细胞重复复制。[4]
体内研究 (In Vivo)
CGP57380 (40 mg/kg/d ip) 可有效消除 BC CML 细胞作为 LSC 和连续移植免疫缺陷小鼠的功能。 [4]
在这里,我们如前所述,对BC样本中的GMP进行FACS分选,并将其注射到8至12周龄的雌性NSG小鼠体内(图S8A)。移植后6周,用DMSO、CGP57380或达沙替尼治疗移植小鼠3周(每个治疗组n=5只小鼠)。在治疗期结束时,杀死所有小鼠,并使用免疫磁珠从造血组织中获得人类细胞。我们发现,每个治疗组的外周血或骨髓中CD45+人细胞的百分比没有差异(图6A)。然而,我们观察到达沙替尼和CGP57380对承诺的BC祖细胞具有特异性活性,因为与对照组相比,它们显著减少了BM中检测到的集落形成单位的数量(分别为P≤0.05和P≤0.005),尽管CGP57370的效果更大(图6B)。然后将从原代小鼠获得的人类细胞移植到次级受体中,并在16周内通过流式细胞术监测植入情况。到4周时,我们能够检测到三个治疗组中所有动物的移植物(图6C)。在DMSO或达沙替尼治疗的动物中,在整个16周的实验时间框架内,移植率保持在80%(即五只动物中的四只),但相比之下,CGP57380治疗的小鼠均无法保持长期移植(图6C)。16周时,对小鼠实施安乐死,并检查BM中是否存在BCR-ABL1。在用DMSO或达沙替尼治疗的每只动物中都检测到BCR-ABL1转录本(即每个治疗组五只动物中有四只),而在CGP57380治疗组的四只动物中只有一只检测到非常微弱的条带(图6D)。使用来自不同个体的CD34+BC细胞重复该实验,得到了类似的结果(图S8 B-J)。综上所述,我们的研究结果表明,体内MNK抑制可以有效地消除BC CML细胞连续移植免疫缺陷小鼠的能力,并作为LSCs发挥作用[4]。
酶活实验
CGP 57380 是 MNK1 的有效抑制剂,IC50 值为 2.2 μM。
MNK1和PRAK通过与活化的p38预孵育而磷酸化,p38是通过与重组MKK6b孵育而产生的(E)。制备重组激酶和eIF4E,并如前所述进行体外激酶反应。使用Oligotex Direct mRNA试剂盒从293细胞中纯化Poly(A)+mRNA。对于体外翻译,根据制造商的说明,在每毫升3或10μg激酶、[35S]蛋氨酸(0.6 mCi/ml)、1.5 mM乙酸镁、75 mM KCl、2 mM DTT和100μM ATP的存在下,用每毫升10μg mRNA对兔网织红细胞裂解物(Promega)进行编程。注意确保所有测定中的缓冲条件相同。翻译反应在30°C下孵育90分钟,并测量掺入TCA可沉淀材料的放射性。[1]
重组p38异构体在以下条件下被Mkk6(E)激活:p38(100 ng/mL)、Mkk6。Mnk1活性的典型测定反应包含激酶缓冲液中的Mnk1(2ng/mL)、HA-eIF4E(10ng/mL)、ATP(300mM)。通过加入活化的p38(0.03-3ng/mL)开始反应,并在30°C下30分钟后通过加入SDS负载缓冲液停止反应。在相同的测定条件下鉴定Mnk1抑制剂,除了在暴露于底物和抑制剂之前使用活性p38a预激活Mnk1[1]。
细胞实验
重组 p38 同种型在以下条件下被 Mkk6(E) 激活:p38 (100 ng/mL)、Mkk6(E) (30 ng/mL)、ATP (100 mM) 在激酶缓冲液(25 mM Hepes、25 mM b-甘油磷酸盐、0.1 mM 原钒酸钠、25 mM MgCl2、2.5 mM DTT,pH 7.4)并在 30°C 下孵育 30 分钟。 Mnk1 (2 ng/mL)、HA-eIF4E (10 ng/mL) 和 ATP (300 mM) 是 Mnk1 活性的典型检测反应的主要成分。添加活化的 p38 (0.03–3 ng/mL) 启动反应,30 分钟后在 30°C 下添加 SDS 上样缓冲液终止反应。使用相同的测定条件来鉴定 Mnk1 抑制剂,但在暴露于底物和抑制剂之前,首先使用活性 p38a 预激活 Mnk1。
动物实验
CD34+ cells (5×105) or GMPs (1×105) are resuspended in 25 μL 1% FBS/PBS solution and injected into the right femur of 8- to 10-wk-old sublethally irradiated (200 cGy) female mice (n=5 mice per group). For each experiment, 1% FBS/PBS solution-injected mice serve as the sham control. Using flow cytometry, mice are examined every 4 weeks after the transplant to see if human cells have grafted. Engrafted mice are treated for 3 weeks with CGP57380 (40 mg/kg/d) intraperitoneally, dasatinib (5 mg/kg/d) by gavage, or vehicle alone (n = 5 mice per group) after 6 weeks following transplantation. After the course of treatment is complete, mice are put down, and CD45+ cells are extracted from the BM and spleen using anti-human CD45-specific immunomagnetic microbeads. In the colony forming cell (CFC) assay, an aliquot of 1×105 human CD45+ cells is seeded into methylcellulose, and colonies are counted after 2 weeks. The remaining human cells from each primary transplant recipient are then all intrafemorally injected into secondary recipients, and human engraftment is monitored every two weeks starting at four weeks. All mice are put to death after 16 weeks. RT-PCR is used to find BCR-ABL1 transcripts, and flow cytometry is used to evaluate engraftment in BM and blood.
参考文献

[1]. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol. 2001 Aug;21(16):5500-11.

[2]. Mnk1 is required for angiotensin II-induced protein synthesis in vascular smooth muscle cells. Circ Res. 2003 Dec 12;93(12):1218-24. Epub 2003 Nov 6.

[3]. Loss of MNK function sensitizes fibroblasts to serum-withdrawal induced apoptosis. Genes Cells. 2007 Oct;12(10):1133-40.

[4]. Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):E2298-307.

其他信息
N3-(4-fluorophenyl)-2H-pyrazolo[3,4-d]pyrimidine-3,4-diamine is a pyrazolopyrimidine.
Eukaryotic initiation factor 4E (eIF4E) is a key component of the translational machinery and an important modulator of cell growth and proliferation. The activity of eIF4E is thought to be regulated by interaction with inhibitory binding proteins (4E-BPs) and phosphorylation by mitogen-activated protein (MAP) kinase-interacting kinase (MNK) on Ser209 in response to mitogens and cellular stress. Here we demonstrate that phosphorylation of eIF4E via MNK1 is mediated via the activation of either the Erk or p38 pathway. We further show that expression of active mutants of MNK1 and MNK2 in 293 cells diminishes cap-dependent translation relative to cap-independent translation in a transient reporter assay. The same effect on cap-dependent translation was observed when MNK1 was activated by the Erk or p38 pathway. In line with these findings, addition of recombinant active MNK1 to rabbit reticulocyte lysate resulted in a reduced protein synthesis in vitro, and overexpression of MNK2 caused a decreased rate of protein synthesis in 293 cells. By using CGP57380, a novel low-molecular-weight kinase inhibitor of MNK1, we demonstrate that eIF4E phosphorylation is not crucial to the formation of the initiation complex, mitogen-stimulated increase in cap-dependent translation, and cell proliferation. Our results imply that activation of MNK by MAP kinase pathways does not constitute a positive regulatory mechanism to cap-dependent translation. Instead, we propose that the kinase activity of MNKs, eventually through phosphorylation of eIF4E, may serve to limit cap-dependent translation under physiological conditions. [1]
Angiotensin II (Ang II) stimulates protein synthesis in vascular smooth muscle cells (VSMCs), possibly secondary to regulatory changes at the initiation of mRNA translation. Mitogen-activated protein (MAP) kinase signal-integrating kinase-1 (Mnk1), a substrate of ERK and p38 MAP kinase, phosphorylates eukaryotic initiation factor 4E (eIF4E), an important factor in translation. The goal of the present study was to investigate the role of Mnk1 in Ang II-induced protein synthesis and to characterize the molecular mechanisms by which Mnk1 and eIF4E is activated in rat VSMCs. Ang II treatment resulted in increased Mnk1 activity and eIF4E phosphorylation. Expression of a dominant-negative Mnk1 mutant abolished Ang II-induced eIF4E phosphorylation. PD98059 or introduction of kinase-inactive MEK1/MKK1, but not SB202190 or kinase-inactive p38 MAP kinase, inhibited Ang II-induced Mnk1 activation and eIF4E phosphorylation, suggesting that ERK, but not p38 MAP kinase, is required for Ang II-induced Mnk1-eIF4E activation. Further, dominant-negative constructs for Ras, but not for Rho, Rac, or Cdc42, abolished Ang II-induced Mnk1 activation. Finally, treatment of VSMCs with CGP57380, a novel specific kinase inhibitor of Mnk1, resulted in dose-dependent decreases in Ang II-stimulated phosphorylation of eIF4E, protein synthesis, and VSMC hypertrophy. In summary, these data demonstrated that (1) Ang II-induced Mnk1 activation is mediated by the Ras-ERK cascade in VSMCs, and (2) Mnk1 is involved in Ang II-mediated protein synthesis and hypertrophy, presumably through the activation of translation-initiation. The Mnk1-eIF4E pathway may provide new insights into molecular mechanisms involved in vascular hypertrophy and other Ang II-mediated pathological states. [2]
Map kinase-interacting protein kinases 1 and 2 (MNK1, MNK2) function downstream of p38 and ERK MAP kinases, but there are large gaps in our knowledge of how MNKs are regulated and function. Mice deleted of both genes are apparently normal, suggesting that MNKs function in adaptive pathways during stress. Here, we show that mouse embryo fibroblasts (MEFs) obtained from mnk1 (-/-)/mnk2 (-/-) as well as mnk1 (-/-) and mnk2 (-/-) mice are sensitized to caspase-3 activation upon withdrawal of serum in comparison to wild-type cells. Caspase-3 cleavage occurs with all cells in the panel, but most rapidly and robustly in cells derived from mice lacking both MNK genes. Treatment of wild-type MEFs in the panel with a compound (CGP57380) that inhibits MNK1 and MNK2 sensitizes wild-type cells for serum-withdrawal induced apoptosis, suggesting that sensitization is due to loss of MNK function and not to a secondary event. Reintroduction of wild-type MNK1 in the double knockout MEFs results in decreased sensitivity to serum withdrawal that is not observed for wild-type MNK2, or the kinase dead variant. Our work identifies MNKs as kinases involved in anti-apoptotic signaling in response to serum withdrawal. [3]
Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated β-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on β-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates β-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased β-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of β-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, β-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK-eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia. [4]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C11H9FN6
分子量
244.23
精确质量
244.087
元素分析
C, 54.10; H, 3.71; F, 7.78; N, 34.41
CAS号
522629-08-9
相关CAS号
522629-08-9
PubChem CID
11644425
外观&性状
Light brown to brown solid powder
密度
1.6±0.1 g/cm3
沸点
541.6±50.0 °C at 760 mmHg
闪点
281.4±30.1 °C
蒸汽压
0.0±1.4 mmHg at 25°C
折射率
1.809
LogP
1.28
tPSA
92.51
氢键供体(HBD)数目
3
氢键受体(HBA)数目
6
可旋转键数目(RBC)
2
重原子数目
18
分子复杂度/Complexity
283
定义原子立体中心数目
0
SMILES
FC1C([H])=C([H])C(=C([H])C=1[H])N([H])C1=C2C(N([H])[H])=NC([H])=NC2=NN1[H]
InChi Key
UQPMANVRZYYQMD-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H9FN6/c12-6-1-3-7(4-2-6)16-11-8-9(13)14-5-15-10(8)17-18-11/h1-5H,(H4,13,14,15,16,17,18)
化学名
3-N-(4-fluorophenyl)-2H-pyrazolo[3,4-d]pyrimidine-3,4-diamine
别名
CGP57380; CGP-57380; MNK1 Inhibitor; N3-(4-fluorophenyl)-1h-pyrazolo[3,4-d]pyrimidine-3,4-diamine; CGP57380; 3-N-(4-fluorophenyl)-2H-pyrazolo[3,4-d]pyrimidine-3,4-diamine; CHEMBL1240885; CGP 57380
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~48 mg/mL (~196.5 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (10.24 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (10.24 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: 4% DMSO +30%PEG 300 +ddH2O: 10mg/mL


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 4.0945 mL 20.4725 mL 40.9450 mL
5 mM 0.8189 mL 4.0945 mL 8.1890 mL
10 mM 0.4095 mL 2.0473 mL 4.0945 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • CGP 57380

    Inhibition of eIF4E phosphorylation by CGP57380, a pharmacological inhibitor of MNK. Mol Cell Biol. 2001 Aug;21(16):5500-11.
相关产品
联系我们