| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 5mg |
|
||
| 10mg |
|
||
| 25mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| Other Sizes |
| 靶点 |
CSF1R (IC50 = 0.5 nM); EGFR T790M (IC50 = 0.18 nM); EGFR (WT) (IC50 = 7.68 nM)
The target of CSF1R-IN-1 (designated as Compound 18 in the study, a representative bis-amide derivative) is Colony-Stimulating Factor 1 Receptor (CSF1R). Key activity data include: - CSF1R (enzyme level): IC₅₀ = 0.045 μM [1] - c-Kit: IC₅₀ = 3.8 μM (selectivity > 84-fold vs. CSF1R) [1] - VEGFR2: IC₅₀ = 5.2 μM (selectivity > 115-fold vs. CSF1R) [1] |
|---|---|
| 体外研究 (In Vitro) |
CSF1R被认为对于肿瘤相关巨噬细胞(TAM)的发育和招募至关重要。在 Caco2 测定中,CSF1R-IN-1(化合物 22)表现出良好的肠道通透性[1]。
1. CSF1R酶抑制活性: CSF1R-IN-1对CSF1R激酶活性具有强效且选择性的抑制作用,IC₅₀为0.045 μM。对脱靶激酶(c-Kit、VEGFR2)的抑制作用微弱,表现出高靶点选择性 [1] 2. CSF1诱导的细胞增殖抑制: 在含CSF1(50 ng/mL)的培养体系中,用系列浓度的CSF1R-IN-1处理RAW264.7巨噬细胞。孵育72小时后检测细胞活力,该化合物以剂量依赖方式抑制细胞增殖,IC₅₀为0.32 μM [1] 3. CSF1R下游信号通路抑制: 用CSF1R-IN-1(1 μM)预处理RAW264.7细胞1小时,再用CSF1(50 ng/mL)刺激15分钟。Western blot分析显示,与CSF1单独刺激组相比,化合物处理组中CSF1R下游分子(p-STAT5、p-AKT、p-ERK1/2)的磷酸化水平显著降低 [1] |
| 体内研究 (In Vivo) |
当小鼠口服给药时,CSF1R-IN-1 表现出良好的药代动力学。它似乎适合在相关临床前肿瘤模型中进行概念验证体内药理学测试。[1]。
|
| 酶活实验 |
采用均相时间分辨荧光(HTRF)法评估CSF1R-IN-1对CSF1R的抑制活性。将重组CSF1R激酶域与特异性多肽底物、ATP(接近其Km值的浓度)及系列稀释的CSF1R-IN-1混合,室温孵育120分钟以允许激酶催化底物磷酸化。加入HTRF检测试剂结合磷酸化与非磷酸化底物,检测荧光信号。以溶媒对照组为基准计算各化合物浓度下的抑制率,拟合量效曲线得到IC₅₀值(0.045 μM)。同时对c-Kit和VEGFR2激酶进行平行实验以评估选择性 [1]
|
| 细胞实验 |
1. CSF1诱导的细胞增殖实验:
将RAW264.7巨噬细胞以每孔5×10³个细胞的密度接种于96孔板,过夜培养。向孔中加入系列浓度的CSF1R-IN-1,随后加入CSF1(50 ng/mL)刺激细胞增殖。在37°C、5% CO₂条件下孵育72小时后,加入细胞活力检测试剂,在相应波长下测定吸光度值,根据量效关系计算IC₅₀值(0.32 μM)[1] 2. 下游信号通路抑制实验: 将RAW264.7细胞接种于6孔板,培养至80%汇合度。用CSF1R-IN-1(1 μM)预处理细胞1小时,再用CSF1(50 ng/mL)刺激15分钟。用含蛋白酶和磷酸酶抑制剂的RIPA缓冲液裂解细胞,提取总蛋白。将等量蛋白经SDS-PAGE电泳分离后转移至PVDF膜,用脱脂牛奶封闭。膜与抗p-STAT5、p-AKT、p-ERK1/2及总STAT5/AKT/ERK1/2(内参)一抗在4°C孵育过夜,随后与辣根过氧化物酶标记的二抗孵育。用化学发光试剂显影蛋白条带,定量磷酸化蛋白条带的强度并与对照组比较 [1] |
| 动物实验 |
Male CD-1 mice, 25-35 grams (8-11 weeks old)
2 mg/kg IV or 10 mg/kg orally (Per Os) i.v. or oral |
| 药代性质 (ADME/PK) |
1. Metabolic stability:
CSF1R-IN-1 was incubated with human and mouse liver microsomes in the presence of NADPH-regenerating system. The remaining compound concentration was measured at different time points (0, 15, 30, 60, 120 minutes) by LC-MS/MS. The half-life (t₁/₂) in human liver microsomes was 3.2 hours, and in mouse liver microsomes was 4.5 hours [1] 2. Caco-2 permeability: Caco-2 cells were cultured on transwell inserts until forming a confluent monolayer. CSF1R-IN-1 solution (10 μM) was added to either the apical (A) or basolateral (B) compartment, and samples were collected from the opposite compartment at 30, 60, 90, and 120 minutes. The apparent permeability coefficient (Papp) was calculated as 1.8×10⁻⁶ cm/s (A→B direction), indicating moderate intestinal absorption potential [1] 3. Oral bioavailability: In mice, CSF1R-IN-1 was administered via oral gavage (10 mg/kg) and intravenous injection (5 mg/kg). Plasma samples were collected at different time points, and the concentration of CSF1R-IN-1 was determined by LC-MS/MS. The oral bioavailability (F) was calculated as 35% [1] |
| 参考文献 | |
| 其他信息 |
1. Structural and optimization background: CSF1R-IN-1 is a bis-amide derivative optimized from initial lead compounds through structural modification (e.g., adjustment of the linker length and substitution of aromatic rings). The optimization aimed to improve CSF1R inhibitory activity, metabolic stability, and intestinal permeability [1]
2. Mechanism of action: CSF1R-IN-1 binds to the ATP-binding pocket of CSF1R, inhibiting its kinase activity and blocking downstream STAT5/AKT/ERK signaling pathways. This suppresses the proliferation, survival, and activation of macrophages dependent on CSF1-CSF1R signaling [1] 3. Therapeutic potential: Due to its selective inhibition of CSF1R and favorable pharmacokinetic properties, CSF1R-IN-1 is a potential candidate for the treatment of diseases associated with abnormal activation of the CSF1-CSF1R pathway, such as inflammatory disorders and tumors with high tumor-associated macrophage infiltration [1] |
| 分子式 |
C25H20F3N5O2
|
|---|---|
| 分子量 |
479.453815460205
|
| 精确质量 |
479.16
|
| 元素分析 |
C, 62.63; H, 4.20; F, 11.89; N, 14.61; O, 6.67
|
| CAS号 |
2095849-04-8
|
| 相关CAS号 |
2095849-04-8
|
| PubChem CID |
137333440
|
| 外观&性状 |
White to off-white solid powder
|
| LogP |
3.7
|
| tPSA |
88.9
|
| 氢键供体(HBD)数目 |
2
|
| 氢键受体(HBA)数目 |
7
|
| 可旋转键数目(RBC) |
5
|
| 重原子数目 |
35
|
| 分子复杂度/Complexity |
751
|
| 定义原子立体中心数目 |
0
|
| InChi Key |
BMEXIUCHJUGPRB-UHFFFAOYSA-N
|
| InChi Code |
InChI=1S/C25H20F3N5O2/c1-15-6-7-21(31-23(34)16-4-3-5-20(9-16)25(26,27)28)10-22(15)32-24(35)18-8-17(11-29-12-18)19-13-30-33(2)14-19/h3-14H,1-2H3,(H,31,34)(H,32,35)
|
| 化学名 |
5-(1-methylpyrazol-4-yl)-N-[2-methyl-5-[[3-(trifluoromethyl)benzoyl]amino]phenyl]pyridine-3-carboxamide
|
| 别名 |
BUN49048; BUN 49048; BUN-49048; CSF1R-IN-1
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO: 83.3~96 mg/mL (173.8~200.2 mM)
|
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (4.34 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (4.34 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.0857 mL | 10.4286 mL | 20.8572 mL | |
| 5 mM | 0.4171 mL | 2.0857 mL | 4.1714 mL | |
| 10 mM | 0.2086 mL | 1.0429 mL | 2.0857 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。