dBET57

别名: dBET57;dBET-57; dBET57; 1883863-52-2; 2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)acetamide; 2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]-N-[2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethyl]acetamide; dBET57?; CHEMBL5180012; SCHEMBL17553391; TQP1624; dBET 57
目录号: V19243 纯度: ≥98%
dBET57 是一种新型 BRD4 异双功能小分子配体 (PROTAC),可显着选择性降解 BRD4 BD1,但对 BRD4 BD2 无活性。
dBET57 CAS号: 1883863-52-2
产品类别: Epigenetic Reader Domain
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
dBET57 是一种新型 BRD4 异双功能小分子配体 (PROTAC),可显着选择性降解 BRD4 BD1,但对 BRD4 BD2 无活性。
生物活性&实验参考方法
靶点
BRD4BD1 (DC50/5h = 500 nM)[1]; DC50: half-maximal degradation concentration, at the half-maximal degradation concentration that degrades 50% of the target protein.
体外研究 (In Vitro)
我们发现,dBET6(DC50/5h~10 nM,DC50/5h是指处理5小时后的一半最大降解)、dBET23(DC50/5h~50 nM)和dBET70(DC50/5h~5 nM)对BRD4BD1蛋白水平的影响最为显著,其次是dBET1(8)(DC50/5-500 nM),dBET57(DC50/5k~500 nM)(图3a和补充图4)。对于BRD4BD2,dBET70(DC50/5h~5 nM)的影响最为明显,其次是dBET6(DC50/5-50 nM)、dBET23(DC50/5h>1μM)和dBET1(DC50/5h~1μM)dBET57表现出BRD4BD1的显著退化,对BRD4BD2无效(图3b和补充图4)。因此,细胞活性在很大程度上与观察到的协同因子成正比(补充图3),发现dBET57在生化和细胞测定中对BRD4BD1具有显著的选择性(图2e和图3a,b)。[1]
酶活实验
我们还注意到,具有短连接体的分子,如dBET57 ,将无法在CRBN-dBET23-BRD4BD1结构中观察到的构象中使CRBN和BRD4二聚,因为将E3分子与靶部分桥接需要至少8个碳,而dBET57包含一个2-碳连接体(补充图5c)。因此,我们询问与观察到的结合模式不相容的降解分子,如dBET57或dBET1,是否会以不同的整体构象结合。 为了探索结合的潜在差异,我们进行了突变分析。在CRBN和BRD4BD1中引入了一组单氨基酸点突变,以获得结合的突变特征。除了IMiD结合缺陷(IBD)对照(CRBNP353G W386A)17外,这些CRBN突变之前已被证明与沙利度胺具有相当的亲和力。当比较不同降解剂的突变特征时,我们发现,虽然dBET6和23具有相似的特征(图4a-c和补充图2和5),但dBET1和dBET57的突变特征是不同的(图4d-f和补充图5),这与dBET6/23和dBET五十七的不同结合面是一致的(图4b,e)。这表明,不同的降解分子——取决于接头长度和连接位置——导致CRBN-BRD4复合物形成的不同结合构象。[1]
参考文献

[1]. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat Chem Biol. 2018 Jul;14(7):706-714.

其他信息
Heterobifunctional small molecule degraders that induce protein degradation through ligase-mediated ubiquitination have shown considerable promise as a new pharmacological modality. However, we currently lack a detailed understanding of the molecular basis for target recruitment and selectivity, which is critically required to enable rational design of degraders. Here we utilize comprehensive characterization of the ligand dependent CRBN/BRD4 interaction to demonstrate that binding between proteins that have not evolved to interact is plastic. Multiple X-ray crystal structures show that plasticity results in several distinct low energy binding conformations, which are selectively bound by ligands. We demonstrate that computational protein-protein docking can reveal the underlying inter-protein contacts and inform the design of a BRD4 selective degrader that can discriminate between highly homologous BET bromodomains. Our findings that plastic inter-protein contacts confer selectivity for ligand-induced protein dimerization provide a conceptual framework for the development of heterobifunctional ligands.[1]
PROTACs or heterobifunctional degrader molecules (hereafter referred to as degraders) typically comprise an E3 ligase binding scaffold (hereafter E3-moiety), often an analogue of thalidomide, or a ligand to the von Hippel-Lindau tumour suppressor (VHL) protein, attached through a linker to another small molecule (hereafter target-moiety) that binds a target protein of interest. Recruitment of this target protein to the E3 ubiquitin ligase facilitates ubiquitination and subsequent degradation of the target protein. This principle has been successfully applied to several targets including the Bromodomain and Extra Terminal (BET) family (BRD2, BRD3, BRD4), RIPK2, BCR-ABL, FKBP12, BRD9, and ERRα and represents a promising new pharmacologic modality now widely explored in chemical biology and drug discovery.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C34H31CLN8O5S
分子量
699.178544282913
精确质量
698.182
元素分析
C, 58.41; H, 4.47; Cl, 5.07; N, 16.03; O, 11.44; S, 4.59
CAS号
1883863-52-2
相关CAS号
1883863-52-2
PubChem CID
118912822
外观&性状
Typically exists as Light yellow to yellow solids at room temperature
LogP
3.7
tPSA
196Ų
氢键供体(HBD)数目
3
氢键受体(HBA)数目
10
可旋转键数目(RBC)
8
重原子数目
49
分子复杂度/Complexity
1380
定义原子立体中心数目
1
SMILES
CC1=C(SC2=C1C(=N[C@H](C3=NN=C(N32)C)CC(=O)NCCNC4=CC=CC5=C4C(=O)N(C5=O)C6CCC(=O)NC6=O)C7=CC=C(C=C7)Cl)C
InChi Key
CZRLOIDJCMKJHE-UXMRNZNESA-N
InChi Code
InChI=1S/C34H31ClN8O5S/c1-16-17(2)49-34-27(16)29(19-7-9-20(35)10-8-19)38-23(30-41-40-18(3)42(30)34)15-26(45)37-14-13-36-22-6-4-5-21-28(22)33(48)43(32(21)47)24-11-12-25(44)39-31(24)46/h4-10,23-24,36H,11-15H2,1-3H3,(H,37,45)(H,39,44,46)/t23-,24?/m0/s1
化学名
2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)acetamide
别名
dBET57;dBET-57; dBET57; 1883863-52-2; 2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)ethyl)acetamide; 2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.02,6]trideca-2(6),4,7,10,12-pentaen-9-yl]-N-[2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethyl]acetamide; dBET57?; CHEMBL5180012; SCHEMBL17553391; TQP1624; dBET 57
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 本产品在运输和储存过程中需避光。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~250 mg/mL (~357.56 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (2.97 mM) (饱和度未知) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80+,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.4302 mL 7.1512 mL 14.3025 mL
5 mM 0.2860 mL 1.4302 mL 2.8605 mL
10 mM 0.1430 mL 0.7151 mL 1.4302 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • Structure of the DDB1ΔB-CRBN-dBET23-BRD4BD1 complex (a) The chemical structure of dBET23 is depicted with the target-moiety in red, the linker in black and cyan, and the E3-moiety in blue. (b) Cartoon representation of DDB1ΔB-CRBN-dBET23-BRD4BD1: DDB1 highlighting domains BPA (red), BPC (orange) and DDB1-CTD (grey); CRBN with domains NTD (blue), HBD (cyan) and CTD (green); BRD4BD1 (magenta). The Zn2+-ion is drawn as a grey sphere and dBET23 as sticks representation in yellow. The FO-FC map is shown as green mesh for dBET23 contoured at 3.0σ. (c) Superposition of DDB1ΔB-CRBN-dBET23-BRD4BD1 with CRBN bound to lenalidomide (pdb: 4tz4) and BRD4BD1 bound to JQ1-(S) (pdb: 3mxf). Surface representation for CRBN and BRD4BD1 are shown in gray and magenta, respectively. dBET23 is shown in yellow, JQ1 in green, and thalidomide in cyan. (d) Side-chain interactions between BRD4BD1, CRBN, and dBET23. Residues of BRD4BD1 mutated in this study are highlighted in cyan. Nat Chem Biol . 2018 Jul;14(7):706-714.
  • Plasticity of CRBN-substrate interactions (a) TR-FRET. dBET23 titrated to BRD4BD1-SPYCATCHER-BODIPY, Terbium-antiHis antibody and various His6-DDB1ΔB-CRBN wild type and His6-DDB1-CRBN mutant proteins. The mean peak heights for dose response curves of three independent replicates are shown as dot-plot. TR-FRET data in this figure is presented as means ± s.d. (b) surface representation of CRBN highlighting the residues involved in dBET23 mediated BRD4BD1 binding in orange (residues Y59, L60, Q86, Q100, F102, H103, P104, D149, F150, G151, I152, I154, K156, P352, H353, E377, H378). CRBN interface residues mutated for biochemical assays are indicated. (c) TR-FRET. dBET23 titrated to DDB1ΔB-CRBNSPYCATCHER-BODIPY, Terbium-Streptavidin and various BRD4BD1-biotin wild type and mutant proteins. The mean peak heights for dose response curves of three independent replicates are shown as dot-plot. TR-FRET data in this figure is presented as means ± s.d. (d) as in a but titrating dBET57. (e) surface representation of CRBN highlighting the BRD4BD1 interacting residues for the dBET57 mediated recruitment in orange (residues: Q325, H353, Y355, H357, I371, G372, R373, E377, V388, Q390, C394, A395, S396, H397, T418, S420). CRBN interface residues mutated for biochemical assays are indicated. (f) as in b but titrating dBET57. (g) Cartoon representation of DDB1ΔB-CRBN-dBET57-BRD4BD1: DDB1 highlighting domains BPA (red), BPC (orange) and DDB1-CTD (grey); CRBN with domains NTD (blue), HBD (cyan) and CTD (green); BRD4BD1 (magenta). The Zn2+-ion is drawn as a grey sphere. dBET57 was not modelled in this structure but instead superpositions of lenalidomide (from pdb: 5fqd) and JQ1 (from pdb: 3mxf) are shown in yellow sticks. (h) Superposition of CRBN and BRD4BD1 for the dBET23 and dBET57 containing complexes. Superposition was carried out over the CRBN-CTD (residues 320 – 400). (i) The chemical structures of dBET57 is depicted with the target-moiety in red, the linker in black and cyan, and the E3-moiety in blue. Nat Chem Biol . 2018 Jul;14(7):706-714.
  • Degrader mediated BRD4 recruitment is governed by negative cooperativity (a) TR-FRET. dBET23 titrated to DDB1ΔB-CRBNSPY-BODIPY, Terbium-Streptavidin and various BRD4BD1-biotin wild type and mutant proteins. The mean peak heights for dose response curves of three independent replicates are shown as dot-plot. Data in this figure is presented as means ± s.d. (n=3). (b) Competitive binding assay for dBET1 binding to DDB1ΔB-CRBN. Increasing concentrations of dBET1 titrated to preformed DDB1ΔB-CRBN-lenalidomideAtto565 complex in presence or absence of BRD4BD1 or BRD4BD2. (c) As in b but using dBET6, (d) dBET23, or (e) dBET57. All data in this figure are independent replicates presented as means ± s.d. (n=3). Nat Chem Biol . 2018 Jul;14(7):706-714.
联系我们