Diphenhydramine

别名: Diphenhydramine; Debendrin; Difenhydramine; Dabylen; PM255; PM-255; PM 255 苯海拉明;苯那君;2-(二苯甲氧基)-N,N-二甲基乙胺; N,N-二甲基-2-(二苯甲氧基)乙胺; 二甲氨基乙醇二苯甲醚;食品级苯海拉明;医药级苯海拉明;2-二苯基甲氧基-N,N-二甲基乙胺;2-(二苯甲基氧代)-N,N-二甲基乙胺
目录号: V11731 纯度: ≥98%
盐酸苯海拉明是一种有效的第一代组胺 H1 受体拮抗剂和止吐药,用于治疗各种过敏性疾病,如鼻炎、荨麻疹和结膜炎。
Diphenhydramine CAS号: 58-73-1
产品类别: Histamine Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
500mg
1g
2g
5g
10g
25g
50g
Other Sizes

Other Forms of Diphenhydramine:

  • 盐酸苯海拉明
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
盐酸苯海拉明是一种有效的第一代组胺 H1 受体拮抗剂和止吐药,用于治疗各种过敏性疾病,如鼻炎、荨麻疹和结膜炎。在 -80 mV 的保持电位下,苯海拉明阻断河豚毒素敏感 (TTX-S) 和河豚毒素抗性 (TTX-R) 钠电流,K(d) 值分别为 48 mM 和 86 mM。苯海拉明使 TTX-S 钠电流的电导电压曲线向去极化方向移动,但对 TTX-R 钠电流的电导电压曲线几乎没有影响。
生物活性&实验参考方法
靶点
H1 Receptor
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Diphenhydramine is quickly absorbed after oral administration with maximum activity occurring in approximately one hour. The oral bioavailability of diphenhydramine has been documented in the range of 40% to 60%, and peak plasma concentration occurs about 2 to 3 hours after administration.
The metabolites of diphenhydramine are conjugated with glycine and glutamine and excreted in urine. Only about 1% of a single dose is excreted unchanged in urine. The medication is ultimately eliminated by the kidneys slowly, mainly as inactive metabolites.
Diphenhydramine is widely distributed throughout the body, including the CNS. Following a 50 mg oral dose of diphenhydramine, the volume of distribution is in the range of 3.3 - 6.8 l/kg.
Values for plasma clearance of a 50 mg oral dose of diphenhydramine has been documented as lying in the range of 600-1300 ml/min.
Distribution of diphenhydramine into human body tissues and fluids has not been fully characterized. Following IV administration in rats, highest concentrations of the drug are attained in the lungs, spleen, and brain, with lower concentrations in the heart, muscle, and liver. Following IV administration in healthy adults, diphenhydramine reportedly has an apparent volume of distribution of 188-336 L. Volume of distribution of the drug reportedly is larger in Asian (about 480 L) than white adults.
The drug crosses the placenta and has been detected in milk, although the extent of distribution into milk has not been quantitated.
Following oral administration of a single 100-mg dose in healthy adults, about 50-75% of the dose is excreted in urine within 4 days, almost completely as metabolites and with most urinary excretion occurring within the first 24-48 hours; only about 1% of a single oral dose is excreted unchanged in urine.
Diphenhydramine, given orally, reaches a maximal concentration in the blood in approximately 2 hours, remains there for another 2 hours, then falls exponentially with a plasma elimination half life of approximately 4-8 hours. The drug is distributed widely throughout the body, including the CNS. Little, if any is excreted unchanged in the urine; most appears there as metabolites.
For more Absorption, Distribution and Excretion (Complete) data for DIPHENHYDRAMINE (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Diphenhydramine undergoes rapid and extensive first-pass metabolism. In particular, two successive N-demethylations occur wherein diphenhydramine is demethylated to N-desmethyldiphenhydramine (the N-desmethyl metabolite) and then this metabolite is itself demethylated to N,N-didesmethyldiphenhydramine (the N,N-didesmethyl metabolite). Subsequently, acetyl metabolites like N-acetyl-N-desmethyldiphenhydramine are generated via the amine moiety of the N,N-didesmethyl metabolite. Additionally, the N,N-didesmethyl metabolite also undergoes some oxidation to generate the diphenylmethoxyacetic acid metabolite as well. The remaining percentage of a dose of administered diphenhydramine is excreted unchanged. The metabolites are further conjugated with glycine and glutamine and excreted in urine. Moreover, studies have determined that a variety of cytochrome P450 isoenzymes are involved in the N-demethylation that characterizes the primary metabolic pathway of diphenhydramine, including CYP2D6, CYP1A2, CYP2C9, and CYP2C19. In particular, CYP2D6 demonstrates higher affinity catalysis with the diphenhydramine substrate than the other isoenzymes identified. Consequently, inducers or inhibitors of these such CYP enzymes may potentially affect the serum concentration and incidence and/or severity of adverse effects associated with exposure to diphenhydramine.
Diphenhydramine is rapidly and apparently almost completely metabolized. Following oral administration, the drug apparently undergoes substantial first-pass metabolism in the liver. Diphenhydramine appears to be metabolized principally to diphenylmethoxyacetic acid, which may further undergo conjugation. The drug also undergoes dealkylation to form the N-demethyl and N, N-didemethyl derivatives. Diphenhydramine and its metabolites are excreted principally in urine.
Diphenhydramine is widely used as an over-the-counter antihistamine. However, the specific human cytochrome P450 (P450) isozymes that mediate the metabolism of diphenhydramine in the range of clinically relevant concentrations (0.14-0.77 microM) remain unclear. Therefore, P450 isozymes involved in N-demethylation, a main metabolic pathway of diphenhydramine, were identified by a liquid chromatography-mass spectrometry method developed in our laboratory. Among 14 recombinant P450 isozymes, CYP2D6 showed the highest activity of diphenhydramine N-demethylation (0.69 pmol/min/pmol P450) at 0.5 uM. CYP2D6 catalyzed diphenhydramine N-demethylation as a high-affinity P450 isozyme, the K(m) value of which was 1.12 +/- 0.21 uM. In addition, CYP1A2, CYP2C9, and CYP2C19 were identified as low-affinity components. In human liver microsomes, involvement of CYP2D6, CYP1A2, CYP2C9, and CYP2C19 in diphenhydramine N-demethylation was confirmed by using P450 isozyme-specific inhibitors. In addition, contributions of these P450 isozymes estimated by the relative activity factor were in good agreement with the results of inhibition studies. Although an inhibitory effect of diphenhydramine on the metabolic activity of CYP2D6 has been reported previously, the results of the present study suggest that it is not only a potent inhibitor but also a high-affinity substrate of CYP2D6. Therefore, it is worth mentioning that the sedative effect of diphenhydramine might be caused by coadministration of CYP2D6 substrate(s)/inhibitor(s). In addition, large differences in the metabolic activities of CYP2D6 and those of CYP1A2, CYP2C9, and CYP2C19 could cause the individual differences in anti-allergic efficacy and the sedative effect of diphenhydramine.
Two strains of the filamentous fungus Cunninghamella elegans (ATCC 9245 and ATCC 36112) were grown in Sabouraud dextrose broth and screened for the ability to metabolize the ethanolamine-type antihistamine diphenhydramine. Based on the amount of parent drug recovered after 7 days incubation, both C. elegans strains metabolized approximately 74% of the diphenhydramine, 58% of this being identified as organic extractable metabolites. The organic extractable metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by analyzing their mass and nuclear magnetic resonance spectra. Desorption chemical ionization mass spectrometry (DCIMS) with deuterated ammonia was used to differentiate possible isobaric diphenhydramine metabolites and to probe the mechanisms of ion formation under ammonia DCIMS conditions. C. elegans transformed diphenhydramine by demethylation, oxidation, and N-acetylation. The major metabolites observed were diphenhydramine-N-oxide (3%), N-desmethyldiphenhydramine (30%), N-acetyldidesmethyldiphenhydramine (13%), and N-acetyl-N-desmethyldiphenhydramine (12%). These compounds are known mammalian metabolites of diphenhydramine ... .
Diphenhydramine has known human metabolites that include Diphenhydramine N-glucuronide and N-Desmethyldiphenhydramine.
Hepatic and renal
Route of Elimination: Little, if any, is excreted unchanged in the urine; most appears as the degradation products of metabolic transformation in the liver, which are almost completely excreted within 24 hours.
Half Life: 1-4 hours
Biological Half-Life
The elimination half-life ranges from 2.4-9.3 hours in healthy adults. The terminal elimination half-life is prolonged in liver cirrhosis.
The pharmacokinetics and pharmacodynamics of the H1-receptor antagonist diphenhydramine were studied in 21 fasting subjects divided into three age groups: elderly, (mean age 69.4 +/- 4.3 years), young adults, (mean age 31.5 +/- 10.4 years), and children, (mean age 8.9 +/- 1.7 years). All subjects ingested a single dose of diphenhydramine syrup 1.25 mg/kg. ... The mean serum elimination half-life values for diphenhydramine differed significantly in elderly adults, young adults, and children, with values of 13.5 +/- 4.2 hours, 9.2 +/- 2.5 hours, and 5.4 +/- 1.8 hours being found respectively in each age group. ...
The terminal elimination half-life of diphenhydramine has not been fully elucidated, but appears to range from 2.4-9.3 hours in healthy adults. The terminal elimination half-life reportedly is prolonged in adults with liver cirrhosis.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
Diphenhydramine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding.
Toxicity Data
LD50: 500 mg/kg (Oral, Rat) (A308)
Interactions
Concurrent use /of ototoxic medications/ with antihistamines may mask the symptoms of ototoxicity such as tinnitus, dizziness, or vertigo. /Antihistamines/
Concurrent use of monoamine oxidase (MAO) inhibitors with antihistamines may prolong and intensify the anticholinergic and CNS depressant effects of antihistamines; concurrent use is not recommended. /Antihistamines/
Concurrent use /with alcohol or other CNS depression-producing medications/ may potentiate the CNS depressant effects of either these medications or antihistamines; also, concurrent use of maprotiline or tricyclic antidepressants may potentiate the anticholinergic effects of either antihistamines or these medications. /Antihistamines/
Anticholinergic effects may be potentiated when /anticholinergics or other medications with anticholinergic activity/ are used concurrently with antihistamines; patients should be advised to report occurrence of gastrointestinal problems promptly since paralytic ileus may occur with concurrent therapy. /Antihistamines/
For more Interactions (Complete) data for DIPHENHYDRAMINE (8 total), please visit the HSDB record page.
参考文献

[1]. Effects of the antihistamine diphenhydramine on selected aquatic organisms. Environ Toxicol Chem. 2011 Sep;30(9):2065-72.

[2]. Open channel block of NMDA receptors by diphenhydramine. Neuropharmacology. 2015 Dec;99:459-70.

[3]. Diphenhydramine pharmacokinetics after oral and intravenous administration of diphenhydramine and oral administration of dimenhydrinate to healthy dogs, and pharmacodynamic effect on histamine-induced wheal formation: a pilot study. Vet Dermatol. 2019 Apr;30(2):91-e24.

[4]. Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity. Kidney Int. 2021 Apr;99(4):885-899.

其他信息
Therapeutic Uses
Anesthetics, Local; Anti-Allergic Agents; Antiemetics; Histamine H1 Antagonists; Hypnotics and Sedatives
Antihistamines are most beneficial in the management of nasal allergies. Seasonal allergic rhinitis (e.g., hay fever) and perennial (nonseasonal) allergic rhinitis are benefited more than perennial nonallergic (vasomotor) rhinitis. Orally administered antihistamines generally provide symptomatic relief of rhinorrhea, sneezing, oronasopharyngeal irritation or itching, lacrimation, and red, irritated, or itching eyes associated with the early response to histamine. /Antihistamines; Included in US product labeling/
Antihistamines are often effective in the treatment of allergic dermatoses and other dermatoses associated with histamine release, but effectiveness varies with the causative agent and symptoms may return when the drug is stopped. /Antihistamines; Included in US product labeling/
Antihistamines may provide some benefit in certain asthmatic patients, but the drugs usually are not effective in treating bronchial asthma per se and should not be used in the treatment of severe acute asthma attacks. In addition, antihistamines are not included in the usual recommended regimens for the management of asthma, including long-term control of the disease. /Antihistamines; Included in US product labeling/
For more Therapeutic Uses (Complete) data for DIPHENHYDRAMINE (12 total), please visit the HSDB record page.
Drug Warnings
Numerous side effects ... /incl/ drowsiness, confusion, restlessness, nausea, vomiting, diarrhea, blurring of vision, diplopia, difficulty in urination, constipation, nasal stuffiness, vertigo, palpitation, headache, and insomnia. Other side effects observed were urticaria, drug rash, photosensitivity, hemolytic anemia, hypotension, epigastric distress, anaphylactic shock, tightness of the chest and wheezing, thickening of bronchial secretions, dryness of the mouth, nose and throat and tingling, and heaviness and weakness of the hands.
Like other antihistamines, diphenhydramine should be used with caution in infants and young children and should not be used in premature or full-term neonates Children younger than 6 years of age should receive diphenhydramine only under the direction of a physician. Safety and efficacy of diphenhydramine as a nighttime sleep aid in children younger than 12 years of age have not been established. In addition, children may be more prone than adults to paradoxically experience CNS stimulation rather than sedation when antihistamines are used as nighttime sleep aids. Because diphenhydramine may cause marked drowsiness that may be potentiated by other CNS depressants (e.g., sedatives, tranquilizers), the antihistamine should be used in children receiving one of these drugs only under the direction of a physician.
Prolonged use of antihistamines ... may decrease or inhibit salivary flow, thus contributing to the development of caries, periodontal disease, oral candidiasis, and discomfort. /Antihistamines/
Local necrosis has occurred with subcutaneous or intradermal administration of parenteral diphenhydramine.
For more Drug Warnings (Complete) data for DIPHENHYDRAMINE (18 total), please visit the HSDB record page.
Pharmacodynamics
Diphenhydramine has anti-histaminic (H1-receptor), anti-emetic, anti-vertigo and sedative and hypnotic properties. The anti-histamine action occurs by blocking the spasmogenic and congestive effects of histamine by competing with histamine for H1 receptor sites on effector cells, preventing but not reversing responses mediated by histamine alone. Such receptor sites may be found in the gut, uterus, large blood vessels, bronchial muscles, and elsewhere. Anti-emetic action is by inhibition at the medullary chemoreceptor trigger zone. Anti-vertigo action is by a central antimuscarinic effect on the vestibular apparatus and the integrative vomiting center and medullary chemoreceptor trigger zone of the midbrain.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C17H21NO
分子量
255.3547
精确质量
255.162
元素分析
C, 79.96; H, 8.29; N, 5.49; O, 6.27
CAS号
58-73-1
相关CAS号
Diphenhydramine hydrochloride; 147-24-0; 88637-37-0 (citrate); 7491-10-3 (salicylate)
PubChem CID
3100
外观&性状
Colorless to light yellow liquid
密度
1.0±0.1 g/cm3
沸点
343.7±27.0 °C at 760 mmHg
熔点
167-172°C
闪点
101.5±26.0 °C
蒸汽压
0.0±0.8 mmHg at 25°C
折射率
1.551
LogP
3.66
tPSA
12.47
氢键供体(HBD)数目
0
氢键受体(HBA)数目
2
可旋转键数目(RBC)
6
重原子数目
19
分子复杂度/Complexity
211
定义原子立体中心数目
0
SMILES
O(C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])[H])C([H])(C1C([H])=C([H])C([H])=C([H])C=1[H])C1C([H])=C([H])C([H])=C([H])C=1[H]
InChi Key
ZZVUWRFHKOJYTH-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H21NO/c1-18(2)13-14-19-17(15-9-5-3-6-10-15)16-11-7-4-8-12-16/h3-12,17H,13-14H2,1-2H3
化学名
2-benzhydryloxy-N,N-dimethylethanamine
别名
Diphenhydramine; Debendrin; Difenhydramine; Dabylen; PM255; PM-255; PM 255
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~100 mg/mL (~391.6 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (9.79 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (9.79 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.9162 mL 19.5810 mL 39.1619 mL
5 mM 0.7832 mL 3.9162 mL 7.8324 mL
10 mM 0.3916 mL 1.9581 mL 3.9162 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04175834 Active
Recruiting
Drug: antihistamine Multiple Sclerosis
Infusion Reaction
Providence Health & Services February 5, 2020 Phase 3
NCT02037126 Active
Recruiting
Drug: Diphenhydramine
Drug: Psilocybin
Cocaine-Related Disorders University of Alabama at
Birmingham
May 2015 Phase 2
NCT04741139 Active
Recruiting
Drug: Acetaminophen and
Diphenhydramine Only Product
Immune Thrombocytopenia Baylor College of Medicine September 2, 2021 Phase 1
NCT04109885 Active
Recruiting
Drug: Paracervical injection
Drug: prochlorperazine
and diphenhydramine.
(Standard Treatment)
Pain Management
Emergency Department
Christian Fromm, MD September 15, 2020 Phase 2
NCT04805073 Recruiting Drug: Promethazine
Drug: Placebo
Pruritus
Pregnancy Related
University of Florida August 9, 2021 Phase 4
相关产品
联系我们