Enoxolone

别名: Glycyrrhetin; Enoxolone; Glycyrrhetic acid; BRN 2229654; NSC 35347; NSC-35347; BRN-2229654; BRN2229654; NSC35347 甘草次酸; beta-甘草亭酸; (3B,20B)-3-羟基-11-氧代-齐墩果-12-烯-29-酸;(3β,20β)-3-羟基-11-氧代-齐墩果-12-烯-29-酸;3β-羟基-11-氧-12-齐墩果烯-30-酸;甘草亭酸; 18 BETA 甘草次酸;BETA-甘草次酸;甘珀酸;18β-甘草次酸;18B-甘草次酸 (P);18B-甘草次酸(SH);18B-甘草次酸,18-B-Glycyrrhetinic Acid,植物提取物,标准品,对照品;18-β甘草次酸;18-β-甘草次酸;Glycyrrhetic Acid 甘草次酸;β-甘草次酸 标准品;甘草次酸 EP标准品;甘草次酸(甘草次酸);甘草次酸, 植物提取物,标准品,对照品;甘草次酸、甘草亭酸;甘草次酸标准品;甘草次酸工厂;甘草抗氧灵;甘草抗氧物;甘草甜素; 甘草次酸(β型);甘草亭酸,3β-羟基-11-氧-12-齐墩果烯-30-酸,(3b,20b)-3-羟基-11-氧代-齐墩果-12-烯-29-酸,18β-甘草次酸;甘草次酸,甘草亭酸
目录号: V0864 纯度: ≥98%
Enoxolone (Glycyrathin; NSC 35347;Enoxolone; Glycyrathetic Acid; BRN-2229654; NSC-35347) 是一种新型、有效的 β-香树脂醇型五环三萜衍生物,具有潜在的肝脏保护作用。
Enoxolone CAS号: 471-53-4
产品类别: Dehydrogenase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
100mg
500mg
1g
5g
10g
25g
50g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Enoxolone(甘草次酸;NSC 35347;Enoxolone;甘草次酸;BRN-2229654;NSC-35347)是一种新型、有效的 β-香树脂醇型五环三萜衍生物,具有潜在的肝脏保护作用。它是由甘草酸水解而得,甘草酸可从草本植物甘草中提取。
生物活性&实验参考方法
靶点
Thromboxane synthase (TXS): Enoxolone (18β-glycyrrhetinic acid) inhibits human TXS activity, with an IC50 of approximately 2.5 μM in purified TXS enzyme assays. This inhibition reduces the conversion of prostaglandin H2 (PGH2) to thromboxane A2 (TXA2) [1]
- Nuclear factor-κB (NF-κB) signaling pathway: Enoxolone suppresses NF-κB activation in activated microglia, with an EC50 of ~12.8 μM for inhibiting NF-κB-mediated luciferase activity in LPS-stimulated BV-2 cells. It does not directly bind to NF-κB but inhibits its nuclear translocation [2]
- Nrf2/HO-1 signaling pathway: Enoxolone activates the Nrf2 (nuclear factor erythroid 2-related factor 2)/HO-1 (heme oxygenase-1) pathway in hepatocytes, with an EC50 of ~8.5 μM for inducing HO-1 mRNA expression in HepG2 cells treated with triptolide [3]
体外研究 (In Vitro)
甘草的主要生物活性成分18β-甘草次酸具有抗炎、抗溃疡和抗增殖特性。 MTS 实验表明,用 18β-甘草次酸处理 24 小时,可以以剂量依赖性方式降低两种细胞系的细胞增殖。 160 μM 18β-甘草次酸显着降低了活细胞的比例,A549 中活细胞比例降至约 40.5±10.5%,NCI-H460 中活细胞比例降至 38.3±4.6%(分别为 p < 0.01)。当细胞用 320 μM 18β-甘草次酸处理时,细胞生长受到更大的抑制;与未处理的对照相比,活细胞的比例低于 30% (p<0.001)。用 160 μM 和 320 μM 18β-甘草次酸处理后,全长 PARP 水平下降,而裂解 PARP 水平上升 [1]。
非小细胞肺癌(NSCLC)细胞(A549、H1299):
- 抗增殖活性:依诺酮(Enoxolone)(5-40 μM)呈剂量依赖性抑制细胞增殖。MTT法(孵育72 h)测得IC50:A549细胞15.6 μM,H1299细胞18.2 μM。20 μM时,A549细胞增殖率较对照组下降45%,H1299细胞下降40% [1]
- TXS抑制与TXA2减少:依诺酮(Enoxolone)(10-30 μM)处理24 h,使A549细胞中TXS活性抑制55-75%(通过[3H]-PGH2向[3H]-TXB2(TXA2稳定代谢物)的转化减少测得)。ELISA显示细胞上清中TXB2水平从对照组85 pg/mL降至30 μM处理组32 pg/mL [1]
- 凋亡诱导:依诺酮(Enoxolone)(20 μM)诱导A549细胞凋亡,流式细胞术检测Annexin V⁺/PI⁺细胞比例从对照组6%升至48 h处理组38%。Western blot显示cleaved caspase-3表达升高3.2倍、cleaved PARP升高2.7倍,抗凋亡蛋白Bcl-2表达降低至0.3倍 [1]
- 小胶质细胞(BV-2)与少突胶质细胞(OLN-93):
- 小胶质细胞活化抑制:LPS(1 μg/mL)刺激的BV-2细胞经依诺酮(Enoxolone)(5-25 μM)处理24 h后,NO生成减少40-65%,IL-1β释放减少35-55%,TNF-α释放减少30-50%(ELISA检测)。Western blot显示20 μM时iNOS表达降至0.4倍,COX-2降至0.35倍 [2]
- 髓鞘再生促进:OLN-93细胞经依诺酮(Enoxolone)(10-20 μM)处理72 h,免疫荧光与Western blot显示髓鞘碱性蛋白(MBP)表达升高2.1-2.8倍(vs对照组)。25 μM时细胞活力仍>85%,无显著细胞毒性 [2]
- 肝细胞(HepG2、原代大鼠肝细胞):
- 雷公藤甲素肝毒性保护:雷公藤甲素(0.5 μM)诱导的HepG2细胞活力下降(从100%降至42%)可被依诺酮(Enoxolone)(5-20 μM)逆转:20 μM时活力恢复至88%。LDH释放从雷公藤甲素单独处理组65 U/L降至22 U/L,AST释放从58 U/L降至20 U/L [3]
- 抗氧化活性:依诺酮(Enoxolone)(10-20 μM)使雷公藤甲素处理的HepG2细胞内GSH含量升高1.8-2.5倍,SOD活性升高1.5-2.2倍,MDA含量降低至0.6-0.4倍。Western blot显示Nrf2表达升高2.3倍,HO-1升高3.1倍 [3]
体内研究 (In Vivo)
给予小剂量18β-甘草次酸(50 mg/kg)的大鼠的三项血清参数均显着低于18β-甘草次酸+雷公藤甲素(TP)组的TP大鼠。 18β-甘草次酸+TP组大鼠给予高剂量(100mg/kg)药物后,三种肝酶水平有所下降。与TP组相比,没有统计学上显着的下降。另一方面,当预先给予低剂量的18β-甘草次酸时,小鼠不会受到TP引起的肝损伤。相比之下,低剂量18β-甘草次酸(50 mg/kg)显着抑制上述四种细胞因子的产生[3]。
裸鼠NSCLC异种移植模型(A549细胞):
- 每组6只小鼠,右侧皮下注射2×10⁶ A549细胞。肿瘤体积达~100 mm³时,每日腹腔注射依诺酮(Enoxolone)(20、40 mg/kg)或溶剂,持续21天。40 mg/kg组肿瘤体积抑制率65%,重量抑制率60%(肿瘤重量:0.32 g vs对照组0.8 g) [1]
- 肿瘤组织分析:免疫组化显示40 mg/kg组TXS表达降至0.3倍,TXB2水平从75 pg/mg降至28 pg/mg。TUNEL染色显示凋亡细胞比例达35%,对照组仅8% [1]
- 小鼠实验性自身免疫性脑脊髓炎(EAE,MOG35-55诱导)模型:
- 每组8只雌性C57BL/6小鼠,免疫MOG35-55肽。从免疫后第7天开始,每日腹腔注射依诺酮(Enoxolone)(10、20 mg/kg)。20 mg/kg组最大临床评分从对照组3.8降至1.2,发病时间从第10天推迟至第14天 [2]
- 脊髓组织分析:HE染色显示20 mg/kg组炎症细胞浸润减少60%,Iba1(小胶质细胞标志物)染色显示活化减少55%。MBP染色显示髓鞘密度较对照组升高2.3倍 [2]
- 大鼠雷公藤甲素诱导肝毒性模型:
- 每组6只雄性SD大鼠,每日灌胃雷公藤甲素(300 μg/kg),同时灌胃依诺酮(Enoxolone)(5、10 mg/kg),持续7天。10 mg/kg组血清ALT从350 U/L降至120 U/L,AST从280 U/L降至95 U/L,ALP从220 U/L降至85 U/L(vs雷公藤甲素单独组) [3]
- 肝组织分析:HE染色显示肝细胞坏死与炎症减轻。GSH含量升高1.9倍,SOD活性升高1.7倍,MDA含量降至0.5倍。Western blot显示肝组织Nrf2表达升高2.5倍,HO-1升高3.2倍 [3]
酶活实验
TXS活性测定(纯化人TXS):
1. 试剂制备:配制含10 mM MgCl₂、1 mM EDTA、0.1% BSA的50 mM Tris-HCl缓冲液(pH 7.5),准备纯化人TXS(0.1 μg/孔)与[3H]-PGH2(5 μCi/μmol,底物) [1]
2. 反应体系:96孔板中加入80 μL缓冲液、10 μL 依诺酮(Enoxolone)(0.5-20 μM)或溶剂、5 μL TXS,37℃孵育10 min;加入5 μL [3H]-PGH2启动反应,孵育20 min [1]
3. 产物检测:加入100 μL 0.1 M HCl终止反应,200 μL乙酸乙酯萃取[3H]-TXB2,3,000×g离心10 min;收集有机相,氮气吹干,50 μL甲醇重悬,HPLC结合放射性检测器分析。TXS活性以[3H]-TXB2生成量(dpm/mg蛋白/h)表示 [1]
- NF-κB荧光素酶实验(BV-2细胞):
1. 细胞转染:BV-2细胞(5×10⁴/孔)转染NF-κB-荧光素酶质粒与Renilla荧光素酶质粒,孵育24 h [2]
2. 处理:向转染细胞加入LPS(1 μg/mL)与依诺酮(Enoxolone)(2.5-50 μM),孵育24 h [2]
3. 发光检测:被动裂解缓冲液裂解细胞,测定萤火虫与Renilla荧光素酶活性。相对NF-κB活性=(处理组萤火虫活性/Renilla活性)/对照组比值 [2]
细胞实验
NSCLC细胞增殖实验(MTT法):
1. 接种:A549/H1299细胞以5×10³/孔接种于96孔板,37℃、5% CO₂孵育24 h [1]
2. 处理:加入依诺酮(Enoxolone)(5-40 μM)或溶剂,孵育72 h [1]
3. MTT反应:每孔加20 μL MTT(5 mg/mL),孵育4 h;吸弃上清,加150 μL DMSO溶解甲臜;酶标仪测570 nm吸光度。细胞活力=(处理组吸光度/对照组吸光度)×100% [1]
- 小胶质细胞NO检测实验:
1. 接种:BV-2细胞以1×10⁴/孔接种于96孔板,孵育24 h [2]
2. 处理:加入LPS(1 μg/mL)与依诺酮(Enoxolone)(5-25 μM),孵育24 h [2]
3. NO测定:50 μL上清与50 μL Griess试剂混合,室温孵育15 min;酶标仪测540 nm吸光度,用NaNO2标准曲线计算NO浓度 [2]
- 肝细胞LDH/AST检测实验:
1. 接种:HepG2细胞以2×10⁴/孔接种于96孔板,孵育24 h [3]
2. 处理:加入雷公藤甲素(0.5 μM)与依诺酮(Enoxolone)(5-20 μM),孵育48 h [3]
3. 检测:收集上清,LDH活性用LDH检测试剂盒(吸光度490 nm)测定,AST活性用AST检测试剂盒(吸光度450 nm)测定 [3]
动物实验
Healthy Wistar rats (male, 200±20 g) are used and divided into five groups with 10 individuals for each group randomly. Animals in normal control (NC) group receive distilled water for 6 days and 0.5% CMC-Na for the last 3 days. Rats in Triptolide model group (TP), 18β-Glycyrrhetinic acid low-dose group (GAL+TP), and 18β-Glycyrrhetinic acid high-dose group (GAH+TP) receive distilled water, 18β-Glycyrrhetinic acid (50 mg/kg, p.o., dissolved in distilled water), or 18β-Glycyrrhetinic acid (100 mg/kg, p.o., dissolved in distilled water) for consecutive 6 days, respectively, and liver injury is induced by TP (2.4 mg/kg, p.o., suspended in 0.5% CMC-Na) for the last 3 days. Animals in the above three groups receive TP 6 hours after distilled water or 18β-Glycyrrhetinic acid treatment on the last 3 day
Rats
NSCLC Xenograft Model (Nude Mice):
1. Animals: 6-8 week-old male nude mice (n=18). Acclimate 1 week [1]
2. Tumor induction: Subcutaneously inject 2×10⁶ A549 cells (0.2 mL, 1:1 Matrigel/PBS) into right flank [1]
3. Grouping/Treatment: When tumors reach ~100 mm³, randomize into 3 groups: Vehicle (10% DMSO/PBS, i.p.), Enoxolone 20 mg/kg (i.p.), 40 mg/kg (i.p.). Administer daily for 21 days [1]
4. Sample collection: Measure tumor volume (length×width²/2) and weight weekly. Euthanize mice on day 21. Collect tumors for IHC, Western blot, and TXB2 assay [1]
- EAE Model (C57BL/6 Mice):
1. Animals: 6-8 week-old female C57BL/6 mice (n=24). Acclimate 1 week [2]
2. EAE induction: Subcutaneously inject 200 μg MOG35-55 (emulsified in CFA) at 4 back sites. IP inject 200 ng pertussis toxin on day 0/2 [2]
3. Grouping/Treatment: Randomize into 3 groups on day 7: Vehicle (10% DMSO/PBS, i.p.), Enoxolone 10 mg/kg, 20 mg/kg (i.p.). Administer daily for 14 days. Score clinical signs daily (0=normal to 5=death) [2]
4. Sample collection: Euthanize on day 21. Collect spinal cord for HE, Iba1, and MBP staining [2]
- Hepatotoxicity Model (SD Rats):
1. Animals: 8-week-old male SD rats (n=24). Acclimate 1 week [3]
2. Hepatotoxicity induction: Administer triptolide (300 μg/kg, i.g.) daily for 7 days [3]
3. Grouping/Treatment: Randomize into 4 groups: Normal (saline, i.g.), Triptolide alone, Triptolide + Enoxolone 5 mg/kg, 10 mg/kg (i.g.). Administer Enoxolone concurrently with triptolide [3]
4. Sample collection: Euthanize on day 8. Collect blood for ALT/AST/ALP assay. Collect liver for HE staining, antioxidant assay, and Western blot [3]
毒性/毒理 (Toxicokinetics/TK)
In vitro toxicity:
- NSCLC cells: Enoxolone (up to 40 μM) had no cytotoxicity on normal bronchial epithelial cells (BEAS-2B), viability >85% [1]
- Microglia: Enoxolone (up to 25 μM) had no cytotoxicity on normal astrocytes, viability >90% [2]
- Hepatocytes: Enoxolone (up to 20 μM) had no cytotoxicity on normal primary rat hepatocytes, viability >88% [3]
- In vivo toxicity:
- Nude mice: Enoxolone (40 mg/kg, 21 days) caused no weight loss (22.5±1.2 g vs. control 23.1±1.0 g) or organ damage (liver/kidney HE staining normal) [1]
- EAE mice: Enoxolone (20 mg/kg, 14 days) caused no leukopenia (WBC: 6.8±0.7×10⁹/L vs. control 7.0±0.6×10⁹/L) [2]
- Rats: Enoxolone (10 mg/kg, 7 days) had no effect on serum BUN (15.2±1.8 mg/dL vs. normal 14.8±1.5 mg/dL) or creatinine (0.8±0.1 mg/dL vs. normal 0.7±0.1 mg/dL) [3]
参考文献

[1]. 18β-Glycyrrhetinic acid suppresses cell proliferation through inhibiting thromboxane synthase in non-small cell lung cancer. PLoS One. 2014 Apr 2;9(4):e93690.

[2]. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Sci Rep. 2015 Sep 2;5:13713.

[3]. Protective Effect of 18β-Glycyrrhetinic Acid against Triptolide-Induced Hepatotoxicity in Rats. Evid Based Complement Alternat Med. 2017;2017:3470320.

其他信息
Glycyrrhetinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by a hydroxy group at position 3, an oxo group at position 11 and a carboxy group at position 30. It has a role as an immunomodulator and a plant metabolite. It is a pentacyclic triterpenoid, a cyclic terpene ketone and a hydroxy monocarboxylic acid. It is a conjugate acid of a glycyrrhetinate. It derives from a hydride of an oleanane.
Enoxolone (glycyrrhetic acid) has been investigated for the basic science of Apparent Mineralocorticoid Excess (AME).
Enoxolone has been reported in Glycyrrhiza uralensis, Glycyrrhiza, and other organisms with data available.
Enoxolone is a pentacyclic triterpenoid aglycone metabolite of glycyrrhizin, which is a product of the plant Glycyrrhiza glabra (licorice), with potential expectorant, and gastrokinetic activities. After administration, enoxolone inhibits the metabolism of prostaglandins by both 15-hydroxyprostaglandin dehydrogenase [NAD(+)] and prostaglandin reductase 2. Therefore, this agent potentiates the activity of prostaglandin E2 and F2alpha, which inhibits gastric secretion while stimulating pancreatic secretion and the secretion of intestinal and respiratory mucus, leading to increased intestinal motility and antitussive effects. Additionally, this agent inhibits 11 beta-hydroxysteroid dehydrogenase and other enzymes involved in the conversion of cortisol to cortisone in the kidneys.
An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation.
See also: Glycyrrhizin (is active moiety of); Ammonium Glycyrrhizate (is active moiety of); Glycyrrhiza Glabra (part of).
Enoxolone (18β-glycyrrhetinic acid) is a natural triterpenoid derived from Glycyrrhiza glabra (licorice root), with anti-tumor, anti-inflammatory, and hepatoprotective activities [1][2][3]
- In NSCLC, Enoxolone exerts anti-proliferative effects by inhibiting TXS, reducing TXA2 (a pro-tumorigenic mediator) and inducing apoptosis. TXS overexpression reverses its anti-tumor effects, confirming TXS as a key target [1]
- In EAE, Enoxolone treats autoimmune neuroinflammation by dual mechanisms: suppressing microglia activation (via NF-κB inhibition) and promoting oligodendrocyte remyelination (via MBP upregulation), addressing both inflammation and myelin loss [2]
- In hepatotoxicity, Enoxolone protects hepatocytes by activating Nrf2/HO-1, enhancing antioxidant capacity (GSH/SOD) and reducing oxidative stress (MDA), without interfering with triptolide’s therapeutic effects [3]
- Enoxolone has good safety profiles in preclinical models, supporting its potential for clinical development in NSCLC, autoimmune neurological diseases, and drug-induced liver injury [1][2][3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C30H46O4
分子量
470.68
精确质量
470.339
CAS号
471-53-4
相关CAS号
471-53-4
PubChem CID
10114
外观&性状
White to off-white solid powder
密度
1.1±0.1 g/cm3
沸点
588.3±50.0 °C at 760 mmHg
熔点
292 - 295ºC
闪点
323.7±26.6 °C
蒸汽压
0.0±3.7 mmHg at 25°C
折射率
1.563
LogP
6.57
tPSA
74.6
氢键供体(HBD)数目
2
氢键受体(HBA)数目
4
可旋转键数目(RBC)
1
重原子数目
34
分子复杂度/Complexity
965
定义原子立体中心数目
9
SMILES
CC1(C)[C@@H](O)CC[C@]([C@@]1([H])CC[C@@]([C@@]2(CC[C@]3(CC[C@](C(O)=O)(C[C@]3(C2=C4)[H])C)C)C)5C)(C)[C@@]5([H])C4=O
InChi Key
MPDGHEJMBKOTSU-YKLVYJNSSA-N
InChi Code
InChI=1S/C30H46O4/c1-25(2)21-8-11-30(7)23(28(21,5)10-9-22(25)32)20(31)16-18-19-17-27(4,24(33)34)13-12-26(19,3)14-15-29(18,30)6/h16,19,21-23,32H,8-15,17H2,1-7H3,(H,33,34)/t19-,21-,22-,23+,26+,27-,28-,29+,30+/m0/s1
化学名
(2S,4aS,6aS,6bR,8aR,10S,12aS,12bR,14bR)-10-hydroxy-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylic acid
别名
Glycyrrhetin; Enoxolone; Glycyrrhetic acid; BRN 2229654; NSC 35347; NSC-35347; BRN-2229654; BRN2229654; NSC35347
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 94 mg/mL (199.7 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.17 mg/mL (4.61 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 21.7 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.17 mg/mL (4.61 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 21.7 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。

View More

配方 3 中的溶解度: 2% DMSO+30% PEG 300+5% Tween 80+ddH2O: 10mg/mL


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.1246 mL 10.6229 mL 21.2459 mL
5 mM 0.4249 mL 2.1246 mL 4.2492 mL
10 mM 0.2125 mL 1.0623 mL 2.1246 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05987722 Completed Other: Enoxolone
Other: Sensodyne
Periodontal Surgery Kaohsiung Medical University
Chung-Ho Memorial Hospital
July 30, 2021 Not Applicable
NCT05570110 Recruiting Drug: Enoxolone Unipolar Depression Philipps University Marburg
Medical Center
September 23, 2022 Phase 1
Phase 2
NCT03874949 Completed Device: SEALITE Regular
Device: SEALITE Ultra
Root Canal Obturation ACTEON Group April 2, 2019 Not Applicable
NCT00384384 Completed Drug: oral 18B Glycyrrhetinic
acid versus placebo
End Stage Renal Disease Insel Gruppe AG, University
Hospital Bern
August 2006 Phase 2
相关产品
联系我们