规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
体内研究 (In Vivo) |
在慕尼黑 Wistar Frömter (MWF) 大鼠中,finerenone (BAY 94-8862) 显着降低收缩压 (SBP) 并将蛋白尿减少超过 40% [1]。
|
---|---|
动物实验 |
Animal/Disease Models: 12weeks old MWF rats[1]
Doses: 10 mg/kg Route of Administration: Po; one time/day for 4 weeks. Experimental Results: The systolic blood pressure of MWF rats was Dramatically diminished; resulting in significant albuminuria in the MWF model. Dramatically diminished (>40%). Animal/Disease Models: 12weeks old MWF rats[1] Doses: 10 mg/kg Route of Administration: Po; one time/day for 4 weeks. Experimental Results: The systolic blood pressure of MWF rats was Dramatically diminished; resulting in significant albuminuria in the MWF model. Dramatically diminished (>40%). |
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
A 10 mg oral dose of finerenone reaches a Cmax of 351 µg/L, with a Tmax of 1.5 hours, and an AUC of 2820 µg\*h/L in plasma. The same dose of finerenone reaches a Cmax of 226 µg/L, with a Tmax of 1.5 hours, and an AUC of 1840 µg\*h/L in whole blood. Regular doses of 20 mg of finerenone reach a geometric mean steady state Cmax of 160 µg/L with an AUC of 686 µg\*h/L. The majority of the dose recovered in urine was in the form of the M2, M3 (47.8%), and M4 metabolites; <1.3% of the dose recovered in the urine was as the unchanged parent compound. The majority of the dose recovered in the feces was as the M5 metabolite, with only 0.2% eliminated as the unchanged parent compound. The M1 metabolite made up <1.5% of the recovered dose in urine and feces. Finerenone is not expected to be metabolized by the intestinal microflora. The volume of distribution of finerenone as steady state is 52.6L. The systemic clearance of finerenone is approximately 25 L/h. Metabolism / Metabolites Finerenone is approximately 90% metabolized by CYP3A4, and 10% metabolized by CYP2C8. There is a minor contribution to metabolism by CYP1A1. Finerenone has no active metabolites. Finerenone is aromatized to the M1 metabolite by CYP3A4 and CYP2C8, which is further hydroxylated by CYP3A4 to the M2 metabolite, and finally oxidized bye CYP3A4 to the M3 metabolite. Alternatively, finerenone can undergo epoxidation and possibly hydrolysis by CYP3A4 and CYP2C8 to form the M4 metabolite, which is hydroxylated again by CYP3A4 to the M5 metabolite, and oxidized to the M8 metabolite. Finerenone can also be hydroxylated by CYP2C8 to the M7 metabolite, and further oxidized to the M9 metabolite. The M10 metabolite is formed by the demethylation, oxidation, and ring opening of finerenone. The M13 metabolite is formed through de-ethylation of finerenone by CYP1A1, and the M14 metabolite is formed through an undefined multi-step process involving CYP2C8 and CYP3A4. Biological Half-Life The half life of a 10 mg dose of finerenone in 4 healthy men was 17.4 hours in plasma and 12.3 hours in whole blood. The terminal half life of finerenone is approximately 2-3 hours. |
毒性/毒理 (Toxicokinetics/TK) |
Hepatotoxicity
In placebo-controlled trials of finerenone in several thousand patients, there was usually no mention of serum enzyme elevations or hepatotoxicity. In the largest placebo controlled trial, the rate of “hepatobiliary” adverse events was similar in patients on finerenone compared to placebo (4.4% vs 4.8%), and there were no reported hepatic serious adverse events. Since its approval and more widespread use, finerenone has not been implicated in instances of acute hepatic injury and the product label does not mention aminotransferase elevations or clinically apparent liver injury in lists of potential adverse events. Likelihood score: E (unlikely cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the use of finerenone during breastfeeding. Finerenone is 92% bound to plasma proteins, so amounts in milk are likely to be low. However, the manufacturer recommends avoiding breastfeeding during treatment and for 1 day after treatment. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding Finerenone is 92% protein bound in plasma; predominantly to serum albumin. |
参考文献 |
|
其他信息 |
Pharmacodynamics
Finerenone is a non-steroidal mineralocorticoid receptor antagonist indicated to reduce the risk of sustained decline in glomerular filtration rate, end stage kidney disease, cardiovascular death, heart attacks, and hospitalization due to heart failure in adults with chronic kidney disease associated with type II diabetes mellitus. It has a moderate duration of action as it is taken once daily, and a wide therapeutic window as patients were given doses from 1.25 mg to 80 mg in clinical trials. Patients should be counselled regarding the risk of hyperkalemia. |
分子式 |
C21H22N4O3
|
---|---|
分子量 |
378.4244
|
精确质量 |
378.169
|
CAS号 |
1050477-31-0
|
相关CAS号 |
(Rac)-Finerenone;1050477-27-4
|
PubChem CID |
60150535
|
外观&性状 |
White to off-white solid powder
|
LogP |
4.273
|
tPSA |
111.25
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
5
|
重原子数目 |
28
|
分子复杂度/Complexity |
670
|
定义原子立体中心数目 |
1
|
SMILES |
CCOC1=NC=C(C2=C1[C@@H](C(=C(N2)C)C(=O)N)C3=C(C=C(C=C3)C#N)OC)C
|
InChi Key |
BTBHLEZXCOBLCY-QGZVFWFLSA-N
|
InChi Code |
InChI=1S/C21H22N4O3/c1-5-28-21-18-17(14-7-6-13(9-22)8-15(14)27-4)16(20(23)26)12(3)25-19(18)11(2)10-24-21/h6-8,10,17,25H,5H2,1-4H3,(H2,23,26)/t17-/m1/s1
|
化学名 |
(4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~200 mg/mL (~528.51 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (5.50 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 配方 2 中的溶解度: ≥ 1.93 mg/mL (5.10 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 19.3 mg/mL的澄清DMSO储备液加入到400 μL PEG300中并混合均匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 1.93 mg/mL (5.10 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6426 mL | 13.2128 mL | 26.4257 mL | |
5 mM | 0.5285 mL | 2.6426 mL | 5.2851 mL | |
10 mM | 0.2643 mL | 1.3213 mL | 2.6426 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
A Study Called FINE-REAL to Learn More About the Use of the Drug Finerenone in a Routine Medical Care Setting
CTID: NCT05348733
Phase:   Status: Recruiting
Date: 2024-11-13