Glucagon 4HCl

别名: Glucagon HCl Glucagon hydrochloride, Porcine glucagon hydrochloride 高血糖素;胰高血糖素;醋酸胰高血糖素; 盐酸胰高血糖素;盐酸胰高血糖素 Glucagon Acetate;盐酸胰高血糖素 GlucagonAcetate;重组人胰高血糖素;高血糖素(GLUCAGON);胰高血糖素(1-29),牛,人,猪;胰岛素肽;醋酸胰高血糖素
目录号: V20246 纯度: ≥98%
Glucagon 4HCl 是胰高血糖素的四盐酸盐,是一种由胰腺 α 细胞产生的内源性肽激素。
Glucagon 4HCl CAS号: 16941-32-5
产品类别: Bacterial
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Glucagon 4HCl:

  • 胰高血糖素盐酸盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
胰高血糖素 4HCl 是胰高血糖素的四盐酸盐,是一种由胰腺 α 细胞产生的内源性肽激素。它可以升高血液中的葡萄糖浓度,其作用与胰岛素降低血糖的作用相反。
生物活性&实验参考方法
体外研究 (In Vitro)
胰高血糖素通过附着于 Gcgr 受体并启动 cAMP-PKA 信号传导来刺激肝葡萄糖生成 (HGP) 并诱发高血压 [1]。胰岛素高血压激素 (100 nM) 抑制人原代细胞中 CYP7A1 mRNA 的表达。胰高血糖素增强血糖 Kisspeptin1 合成和糖异生 [1-3]。胰岛素 (100 nM) 增加了 HNF4α 的磷酸化层。细胞系。在孵育期间,浓度为 100 nM 时,磷酸化 HNF4α 在人原代肝细胞(H1211、HH1215)中显着增加。
体内研究 (In Vivo)
低剂量的胰高血糖素(20微克/千克)并不能拯救生态喂养的大象;相反,它们会导致高血压。
细胞实验
蛋白质印迹分析[3]
细胞类型:人原代肝细胞(H1211、HH1215)
测试浓度: 100 nM
孵育时间:
实验结果:导致磷酸化 HNF4α 的量显着增加。
动物实验
Animal/Disease Models: C57BL/6J mice (12- to 24 weeks old) [4]
Doses: 20 μg/kg and 1 mg/kg
Route of Administration: administered by ip injection; insulin [4]. 45 min
Experimental Results: Low dose (20 μg/kg) increases blood glucose but does not stimulate insulin secretion. High doses (1 mg/kg) lower blood sugar and stimulate insulin secretion.
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
A 1mg intravenous dose of glucagon reaches a Cmax of 7.9ng/mL with a Tmax of 20 minutes. An intramuscular dose reaches a Cmax of 6.9ng/mL with a Tmax of 13 minutes. A 3mg dose of glucagon nasal powder reaches a Cmax of 6130pg/mL with a Tmax of 15 minutes.
Elimination of glucagon is not fully characterized in literature, however the kidney and liver appear to contribute significantly in animal models. The liver and kidney are responsible for approximately 30% of glucagon elimination each.
The volume of distribution of glucagon is 0.25L/kg. The apparent volume of distribution is 885L.
A 1mg intravenous dose of glucagon has a clearance of 13.5mL/min/kg.
Because of its polypeptide nature, glucagon is destroyed in the GI tract, and therefore must be administered parenterally.
Metabolism / Metabolites
Glucagon is a protein and so it is metabolized into smaller polypeptides and amino acids in the liver, kidney, and plasma.
Biological Half-Life
The half life of glucagon is 26 minutes for an intramuscular dose. The half life of glucagon nasal powder is approximately 35 minutes. The half life of glucagon by a subcutaneous auto-injector or pre-filled syringe is 32 minutes.
Glucagon has a plasma half-life of about 3-10 minutes.
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of glucagon during breastfeeding. Because glucagon is a large protein molecule with a molecular weight of 3483 Da, the amount in milk is likely to be very low and absorption is unlikely because it is probably destroyed in the infant's gastrointestinal tract. Glucagon has also been safely given directly to infants by injection. No special precautions are required.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Glucagon has not been described in the literature as bound to a protein in serum.
Interactions
HYPERGLYCEMIC EFFECT OF GLUCAGON IS INCREASED & PROLONGED BY SIMULTANEOUS ADMIN OF EPINEPHRINE.
When glucagon is administered concomitantly with an antimuscarinic the response is not substantially greater than when either drug is used alone; however, the addition of the antimuscarinic results in adverse effects.
Concurrent use /of coumarin- or indandione-derivative anticoagulants/ with glucagon may potentiate the anticoagulant effects; enhanced anticoagulant activity has been reported with unusually high doses such as 25 mg or more per day for 2 or more days.
参考文献

[1]. Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metab. 2014 Apr 1;19(4):667-81.

[2]. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem. 2003 Apr 11;278(15):13056-60.

[3]. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in humanhepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology. 2006 Jan;43(1):117-25.

[4]. Glucagon lowers glycemia when β-cells are active. JCI Insight. 2019 Jul 23;5. pii: 129954.

其他信息
Glucagon is a 29-amino acid peptide hormone consisting of His, Ser, Gln, Gly, Thr, Phe, Thr, Ser, Asp, Tyr, Ser, Lys, Tyr, Leu, Asp, Ser, Arg, Arg, Ala, Gln, Asp, Phe, Val, Gln, Trp, Leu, Met, Asn and Thr residues joined in sequence.
Glucagon is a 29 amino acid hormone used as a diagnostic aid in radiologic exams to temporarily inhibit the movement of the gastrointestinal tract and to treat severe hypoglycemia. Glucagon raises blood sugar through activation of hepatic glucagon receptors, stimulating glycogenolysis and the release of glucose. Glucagon was granted FDA approval on 14 November 1960.
Recombinant Glucagon is the recombinant form of the endogenous polypeptide hormone Glucagon consisting of 29 amino acids responsible for the release of stored glucose, causing increased blood glucose levels. Clinical Use: Diagnostic Aid for Imaging Studies and Hypoglycemia.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
See also: Glucagon Hydrochloride (has salt form) ... View More ...
Drug Indication
Glucagon is indicated as a diagnostic aid in radiologic exams to temporarily inhibit the movement of the gastrointestinal tract and to treat severe hypoglycemia.
FDA Label
Ogluo is indicated for the treatment of severe hypoglycaemia in adults, adolescents, and children aged 2 years and over with diabetes mellitus.
Baqsimi is indicated for the treatment of severe hypoglycaemia in adults, adolescents, and children aged 4 years and over with diabetes mellitus.
Treatment of hypoglycaemia
Mechanism of Action
Glucagon binds to the glucagon receptor activating Gsα and Gq. This activation activates adenylate cyclase, which increases intracellular cyclic AMP and activates protein kinase A. Activating Gq activates phospholipase C, increases production of inositol 1,4,5-triphosphate, and releases intracellular calcium. Protein kinase A phosphorylates glycogen phosphorylase kinase, which phosphorylates glycogen phosphorylase, which phosphorylates glycogen, causing its breakdown. Glucagon also relaxes smooth muscle of the stomach, duodenum, small bowel, and colon.
Glucagon increases the blood glucose concentration by mobilizing hepatic glycogen and thus is effective only when hepatic glycogen is available. Patients with reduced glycogen stores (eg, starvation, adrenal insufficiency, alcoholic hypoglycemia) cannot respond to glucagon.
Glucagon produces extra hepatic effects that are independent of its hyperglycemic action. Although the exact mechanism(s) of action has not been conclusively determined, glucagon produces relaxation of smooth muscle of the stomach, duodenum, small intestine, and colon. The drug has also been shown to inhibit gastric and pancreatic secretions.
Promotes hepatic glycogenolysis and gluconeogenesis. Stimulates adenylate cyclase to produce increased cyclic-AMP, which is involved in a series of enzymatic activities. The resultant effects are increased concentrations of plasma glucose, a relaxant effect on smooth musculature, and an inotropic myocardial effect. Hepatic stores of glycogen are necessary for glucagon to elicit an antihypoglycemic effect.
Therapeutic Uses
Gastrointestinal Agents; Protein Synthesis Inhibitors
Glucagon is used in the treatment of lower esophageal obstruction due to foreign bodies, including food boluses. /NOT included in US product labeling/
Glucagon may be of use in treating myocardial depression due to calcium channel blocking agents in those patients in whom conventional therapies have been ineffective. /NOT included in US product labeling/
Glucagon administered in large intravenous doses is used to treat the cardiotoxic effects, specifically bradycardia and hypotension, in overdoses of beta-adrenergic blocking agents. Glucagon may be used with the proterenol or dobutamine. Supplemental potassium may be necessary for treated patients since glucagon tends to reduce serum potassium. /NOT included in US product labeling/
For more Therapeutic Uses (Complete) data for GLUCAGON (19 total), please visit the HSDB record page.
Drug Warnings
...EFFECTIVE ONLY WHEN ADMIN PARENTERALLY. ITS HYPERGLYCEMIC EFFECT IS...OF RELATIVELY BRIEF DURATION. .../SUPPLEMENTARY CARBOHYDRATES SHOULD BE GIVEN AS SOON AS POSSIBLE AFTER PATIENT RESPONDS/. AN ADDITIONAL SUGAR SOURCE IS ESPECIALLY IMPORTANT IN JUVENILES...
Since glucagon is a protein, the possibility of hypersensitivity reactions should be considered.
Side/Adverse Effects: Those indicating need for medical attention only if they continue or are bothersome: Nausea or vomiting - incidence is generally dependent upon dose and (with intravenous use) the rate of injection; these effects may be diminished by slower intravenous administration.
Glucagon should not be used to treat birth asphyxia or hypoglycemia in premature infants or in infants who have had intrauterine growth retardation.
Glucagon has been used as an aid in the diagnosis of insulinoma and pheochromocytoma; however, USP advisory panels do not generally recommend this use because of questions about safety.
Pharmacodynamics
Glucagon is indicated as a diagnostic aid in radiologic exams to temporarily inhibit the movement of the gastrointestinal tract and severe hypoglycemia. Glucagon raises blood sugar through activation of hepatic glucagon receptors, stimulating glycogenolysis and the release of glucose. Glucagon has a short duration of action. Glucagon may cause hyperglycemia in diabetic patients.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C153H229CL4N43O49S
分子量
3628.627
精确质量
3480.615
CAS号
16941-32-5
相关CAS号
Glucagon (1-29), bovine, human, porcine hydrochloride;28270-04-4
PubChem CID
16132283
外观&性状
White to off-white solid powder
密度
1.5±0.1 g/cm3
折射率
1.682
LogP
-6.01
tPSA
1564.04
氢键供体(HBD)数目
55
氢键受体(HBA)数目
55
可旋转键数目(RBC)
115
重原子数目
246
分子复杂度/Complexity
8160
定义原子立体中心数目
31
别名
Glucagon HCl Glucagon hydrochloride, Porcine glucagon hydrochloride
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O : ~6.67 mg/mL (~1.92 mM)
DMSO : ~2 mg/mL (~0.57 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 0.2 mg/mL (0.06 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 2.0 mg/mL 澄清的 DMSO 储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL 生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 0.2 mg/mL (0.06 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 2.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 0.2756 mL 1.3779 mL 2.7559 mL
5 mM 0.0551 mL 0.2756 mL 0.5512 mL
10 mM 0.0276 mL 0.1378 mL 0.2756 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
The Effect of Glucagon on Rates of Hepatic Mitochondrial Oxidation in Man Assessed by PINTA
CTID: NCT03965130
Phase: Phase 1    Status: Completed
Date: 2024-11-26
Research Study in Japan to Compare Dasiglucagon With Glucagon in Treating Very Low Levels of Blood Sugar in Asian Adults With Type 1 Diabetes and Testing of Dasiglucagon for the Same Condition in Japanese Adolescents
CTID: NCT06588504
Phase: Phase 1    Status: Recruiting
Date: 2024-10-01
Human Models of Selective Insulin Resistance: Pancreatic Clamp
CTID: NCT06558422
Phase: Phase 1    Status: Not yet recruiting
Date: 2024-09-20
Pancreatic Clamp in NAFLD
CTID: NCT05724134
Phase: Phase 1    Status: Recruiting
Date: 2024-09-19
Effect of Prolonged (72 Hour) Glucagon Administration on Energy Expenditure in Healthy Obese Subjects
CTID: NCT03139305
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-08-05
View More

To Determine Tolerability to Glucagon Infusion in Obese Subjects
CTID: NCT02817659
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-08-05


Dexamethasone/Pancreatic Clamp P&F
CTID: NCT06126354
Phase: Phase 1    Status: Withdrawn
Date: 2024-07-10
Haemodynamic Effects of GLP-1 and Glucagon in Healthy Male Volunteers
CTID: NCT03835013
Phase: N/A    Status: Completed
Date: 2024-04-03
Liver Glycogen and Hypoglycemia in Humans
CTID: NCT03241706
Phase: Phase 1    Status: Active, not recruiting
Date: 2024-02-28
Value of PET/MR Enterography in the Assessment of Crohn's Disease Using a Collagen-binding Radiotracer.
CTID: NCT06252493
Phase:    Status: Recruiting
Date: 2024-02-12
Glucagon Enhanced Insulin Absorption in Diabetes Mellitus Type 1
CTID: NCT05960565
Phase: Phase 2    Status: Recruiting
Date: 2023-07-25
The Effect of Lifestyle-induced Hepatic Steatosis on Glucagon-stimulated Amino Acid Turnover
CTID: NCT04859322
Phase: N/A    Status: Completed
Date: 2023-05-11
Metabolic Adaptation to High-frequent Hypoglycaemia in Type 1 Diabetes
CTID: NCT05095259
Phase: N/A    Status: Active, not recruiting
Date: 2023-05-03
Closed-Loop Glucagon Pump for Treatment of Post-Bariatric Hypoglycemia
CTID: NCT03255629
Phase: Phase 1/Phase 2    Status: Completed
Date: 2022-09-06
Dual-hormone Closed-loop Glucose Control in Type 1 Diabetes
CTID: NCT04053712
Phase: Phase 4    Status: Completed
Date: 2022-08-18
Dual-Hormone Closed-Loop Glucose Control in Adolescents With Type 1 Diabetes
CTID: NCT04949867
Phase: Phase 4    Status: Completed
Date: 2022-08-18
In Vivo Assessment of Cellular Metabolism in Humans
CTID: NCT02748369
Phase: Phase 1    Status: Completed
Date: 2022-08-03
A Study to Demonstrate Bioequivalence Between Insulin Glulisine U300 and Insulin Glulisine U100 After a Single Subcutaneous Dose Using the Euglycemic Clamp Technique, in Patients With Type 1 Diabetes Mellitus
CTID: NCT02910518
Phase: Phase 1 Status:
G-PEN (GLUCAGON INJECTION) COMPARED TO GLUCAGEN® HYPOKIT® (GLUCAGON) FOR INDUCED HYPOGLYCEMIA RESCUE IN ADULTS WITH T1D: A PHASE 3 MULTI-CENTER, RANDOMIZED, CONTROLLED, SINGLE BLIND, 2-WAY CROSSOVER STUDY TO EVALUATE EFFICACY AND SAFETY
CTID: null
Phase: Phase 3    Status: Completed
Date: 2019-03-13
A phase 3, randomized, double-blind, placebo- and active-controlled, parallel-arm trial to assess the efficacy, safety, and pharmacokinetics of dasiglucagon relative to placebo and GlucaGen® when administered as a rescue therapy for severe hypoglycemia in children with T1DM treated with insulin
CTID: null
Phase: Phase 3    Status: Completed
Date: 2019-01-29
A phase 3, randomized, double-blind, parallel trial to confirm the clinical efficacy and safety of dasiglucagon in the rescue treatment of hypoglycemia in subjects with type 1 diabetes mellitus (T1DM) compared to placebo and with reference to GlucaGen®
CTID: null
Phase: Phase 3    Status: Completed
Date: 2018-02-16
A phase 3, Randomized, Double-Blind, Parallel Group Safety Trial to Evaluate the Immunogenicity of Dasiglucagon And GlucaGen® Administered Subcutaneously in Patients with Type 1 Diabetes Mellitus (T1DM)
CTID: null
Phase: Phase 3    Status: Completed
Date: 2017-05-29
A randomised, sequential, cross-over trial assessing pharmacokinetic and pharmacodynamic responses after micro-doses of ZP4207 administered subcutaneously to patients with type 1 diabetes mellitus under euglycaemic and hypoglycaemic conditions and with reference to freshly reconstituted lyophilized glucagon
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-11-28
A randomized, double-blind trial of single doses of ZP4207 administered s.c. to hypoglycemic Type 1 diabetic patients to describe the pharmacokinetics and pharmacodynamics of ZP4207 as compared to marketed glucagon
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-01-20
Combining Glucagon and Insulin Infusion with Glucose Sensing in Subcutaneous Adipose Tissue of Type 1 Diabetes Patients
CTID: null
Phase: Phase 4    Status: Completed
Date: 2015-07-14
Assessment of the Duration of Glucagon’s Waning Effect on the Hepatic Glucose Production in Type 1 Diabetes Patients
CTID: null
Phase: Phase 4    Status: Completed
Date: 2015-03-23
Dual-Hormone Closed-Loop Glucose Control in Type 1 Diabetes
CTID: null
Phase: Phase 4    Status: Prematurely Ended
Date: 2014-11-20
Treatment of hypoglycemia with glucagon among patients with type 1 diabetes mellitus
CTID: null
Phase: Phase 4    Status: Completed
Date: 2014-07-31
Evaluation of the Effect of Glucagon Solutions on the Glucose Concentration at the Subcutaneous Administration Site in Type 1 Diabetic Patients.
CTID: null
Phase: Phase 4    Status: Completed
Date: 2014-07-11
Assessment of Hepatic Glucose Production Following Repeated Glucagon Administration in Type 1 Diabetes Patients
CTID: null
Phase: Phase 4    Status: Completed
Date: 2013-06-04
Randomized study evaluating antiperistaltic effect of L-menthol sprayed onto the colonic mucosa for colonic endoscopic mucosal resection in patients with underlying disease
CTID: UMIN000007984
Phase: Phase III    Status: Complete: follow-up complete
Date: 2012-05-18
The evaluation of usefulness of peppermint oil solution as an antispasmodic drug for esophagogastroduodenoscopy.
CTID: UMIN000004710
Phase:    Status: Complete: follow-up complete
Date: 2010-12-12

联系我们