| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 10 mM * 1 mL in DMSO |
|
||
| 1mg |
|
||
| 5mg |
|
||
| 10mg |
|
||
| 25mg |
|
||
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| Other Sizes |
| 靶点 |
CFTR/cystic fibrosis transmembrane conductance regulator
|
|---|---|
| 体外研究 (In Vitro) |
像 KM11060 这样的小分子校正剂的药理学工具可能有助于研究 F508del-CFTR 加工问题和开发囊性纤维化的治疗方法。在天然上皮组织和培养细胞中,KM11060 都能恢复 F508del-CFTR 运输。 F508del-CFTR 处理在很大程度上被 KM11060 纠正,这还将表面表达提高到低温培养细胞中所见的 75%。在用 KM11060 处理的细胞中,高达 50% 的 F508del-CFTR 被复合糖基化,表明高尔基体转运。 KM11060 是一种对于推进 CF 治疗具有潜在用途的物质。 [1]
|
| 体内研究 (In Vivo) |
当LPS引起急性肺部炎症时,通过阻断PSGL-1(P-选择素糖蛋白配体-1)或P-选择素、用WEB2086阻断PAF或纠正突变的CFTR,F508del小鼠血浆脂氧素A4水平相对于野生型小鼠可显着升高通过 KM11060 进行贩运。 [2]
CFTR(囊性纤维化跨膜电导调节因子)由中性粒细胞和血小板共同表达。缺乏功能性CFTR可能导致严重的肺部感染和炎症。在这里,我们发现,在急性大肠杆菌肺炎期间,小鼠CFTR(F508del)的突变或CFTR的抑制导致更严重的血小板减少症、肺泡中性粒细胞增多症和细菌病,BAL(支气管肺泡灌洗)中的脂氧素A4/MIP-2(巨噬细胞抑制蛋白-2)或脂氧素A4/中性粒细胞比率降低。在体外,抑制CFTR可促进LPS刺激的中性粒细胞中MIP-2的产生;然而,脂蛋白A4可以剂量依赖性地抑制这种作用。在LPS诱导的急性肺部炎症中,阻断PSGL-1(P-选择素糖蛋白配体-1)或P-选择素,WEB2086拮抗PAF,或KM11060纠正突变的CFTR运输,都可以显著增加F508del中与野生型小鼠相关的血浆脂蛋白A4水平。同时,在LPS攻击下,F508del小鼠的血浆血小板活化因子(PAF)水平和PAF-AH活性高于野生型。与赋形剂治疗的F508del组相比,特异性PAF-AH(PAF乙酰水解酶)抑制剂MAFP抑制PAF的水解可能会加重LPS诱导的F508del小鼠的肺部炎症。特别是,与对照组F508del小鼠相比,F508del鼠血小板耗竭可显著降低血浆脂蛋白A4和PAF-AH活性,并加重LPS诱导的肺部炎症。综上所述,脂氧蛋白A4和PAF参与了大肠杆菌或LPS诱导的CFTR缺陷小鼠的肺部炎症,表明脂氧蛋白A4和PAF可能是改善CFTR缺陷恶化肺部炎症的治疗靶点。[2] |
| 酶活实验 |
KM11060 是 F508del-CFTR(囊性纤维化跨膜电导调节因子)运输缺陷的新型校正剂。它纠正 F508del-CFTR 运输,增加质膜上功能性 CFTR 的数量 (~75%) 并抑制 PDE5 活性。
|
| 细胞实验 |
KM11060 等小分子校正剂可作为 F508del-CFTR 加工缺陷研究和囊性纤维化治疗药物开发中有用的药理学工具。 KM11060 拯救培养细胞和天然上皮组织中的 F508del-CFTR 运输。 KM11060 部分纠正了 F508del-CFTR 处理,并将表面表达增加至低温培养细胞中观察到的表达水平的 75%。在用 KM11060 处理的细胞中,高达 50% 的 F508del-CFTR 被复合糖基化,表明通过了高尔基体。 KM11060 是一种有前途的化合物,可用于进一步开发 CF 疗法。
|
| 动物实验 |
Administration of CFTR Inhibitors[2]
Mice were intraperitoneally injected (ip) with MalH-2 (dissolved in PBS, 3 mg/kg) or CFTRinh-172 (dissolved in DMSO, 3 mg/kg) 15∼20 min before intratracheal challenge with E. coli or LPS to establish lung inflammation mouse models. E. coli Pneumonia and LPS-induced Acute Lung Inflammation Models[2] Eight to ten-week old CD1 wild-type and CF mice (targeted F508del gene replacement, obtained from Professor A. Verkman, University of California San Francisco) were used for these studies. Anesthesia was induced with an ip injection of a mixture of ketamine (90 mg/kg) and xylazine (10 mg/kg). [2] A previously developed direct visualization instillation (DVI) method was used to instill LPS into the airspaces of the lung. The LPS dosage (5 mg/kg) was selected aiming to induce a robust lung inflammation and injury at 24 h as previously reported and no mice died at this dosage. For establishing E. coli pneumonia, 107 cfu of E. coli were instilled into the airspaces of the lung as reported before. E. coli pneumonia and LPS-induced acute lung inflammation mouse models were followed for 4 and 24 respectively. Vital signs of each mouse were observed timely. At the end of experiment, mice were first anesthetized and then sacrificed by cervical dislocation. |
| 参考文献 |
|
| 其他信息 |
The F508del mutation impairs trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane and results in a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We recently used a novel high-throughput screening (HTS) assay to identify small-molecule correctors of F508del CFTR trafficking and found several classes of hits in a screen of 2000 compounds (Carlile et al., 2007). In the present study, we have extended the screen to 42,000 compounds and confirmed sildenafil as a corrector using this assay. We evaluated structural analogs of sildenafil and found that one such molecule called KM11060 (7-chloro-4-{4-[(4-chlorophenyl) sulfonyl] piperazino}quinoline) was surprisingly potent. It partially restored F508del trafficking and increased maturation significantly when baby hamster kidney (BHK) cells were treated with 10 nM for 24 h or 10 muM for 2 h. Partial correction was confirmed by the appearance of mature CFTR in Western blots and by using halide flux, patch-clamp, and short-circuit current measurements in unpolarized BHK cells, monolayers of human airway epithelial cells (CFBE41o(-)), and intestines isolated from F508del-CFTR mice (Cftr(tm1Eur)) treated ex vivo. Small-molecule correctors such as KM11060 may serve as useful pharmacological tools in studies of the F508del-CFTR processing defect and in the development of cystic fibrosis therapeutics.[1]
|
| 分子式 |
C19H17CL2N3O2S
|
|
|---|---|---|
| 分子量 |
422.33
|
|
| 精确质量 |
421.041
|
|
| 元素分析 |
C, 54.04; H, 4.06; Cl, 16.79; N, 9.95; O, 7.58; S, 7.59
|
|
| CAS号 |
774549-97-2
|
|
| 相关CAS号 |
|
|
| PubChem CID |
1241327
|
|
| 外观&性状 |
White to off-white solid powder
|
|
| 密度 |
1.5±0.1 g/cm3
|
|
| 沸点 |
607.3±65.0 °C at 760 mmHg
|
|
| 闪点 |
321.1±34.3 °C
|
|
| 蒸汽压 |
0.0±1.7 mmHg at 25°C
|
|
| 折射率 |
1.676
|
|
| LogP |
4.19
|
|
| tPSA |
61.89
|
|
| 氢键供体(HBD)数目 |
0
|
|
| 氢键受体(HBA)数目 |
5
|
|
| 可旋转键数目(RBC) |
3
|
|
| 重原子数目 |
27
|
|
| 分子复杂度/Complexity |
599
|
|
| 定义原子立体中心数目 |
0
|
|
| SMILES |
ClC1C([H])=C([H])C2C(C=1[H])=NC([H])=C([H])C=2N1C([H])([H])C([H])([H])N(C([H])([H])C1([H])[H])S(C1C([H])=C([H])C(=C([H])C=1[H])Cl)(=O)=O
|
|
| InChi Key |
GIEHIZKCIZLXLF-UHFFFAOYSA-N
|
|
| InChi Code |
InChI=1S/C19H17Cl2N3O2S/c20-14-1-4-16(5-2-14)27(25,26)24-11-9-23(10-12-24)19-7-8-22-18-13-15(21)3-6-17(18)19/h1-8,13H,9-12H2
|
|
| 化学名 |
7-chloro-4-(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)quinoline
|
|
| 别名 |
|
|
| HS Tariff Code |
2934.99.9001
|
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
DMSO: ~84 mg/mL ( 198.89 mM)
Water: Insoluble Ethanol: <2 mg/mL |
|---|---|
| 溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 5 mg/mL (11.84 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 50.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 配方 2 中的溶解度: 10%DMSO+90%corn oil:≥ 5 mg/mL (11.84 mM); 澄清溶液 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
| 制备储备液 | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.3678 mL | 11.8391 mL | 23.6782 mL | |
| 5 mM | 0.4736 mL | 2.3678 mL | 4.7356 mL | |
| 10 mM | 0.2368 mL | 1.1839 mL | 2.3678 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。