规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
P2X7 Receptor; CaMK II (Ki = 0.9 μM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
KN-62 可有效抑制 ATP 刺激的 Ba2+ 流入载有 fura-2 的人淋巴细胞,IC50 为 12.7 nM,总通量抑制为 500 nM[1]。 KN-62 不抑制自磷酸化 Ca2+/CaM 激酶 II 的活性。在存在或不存在外源底物的情况下,KN-62 剂量依赖性地抑制 Ca2+/CaM 激酶 II 的 α (50 kDa) 和 β (60 kDa) 亚基的 Ca2+/钙调蛋白依赖性自磷酸化[2]。在人白血病 B 淋巴细胞中,KN-62 降低了 Bz-ATP 诱导的对较大渗透阳离子(如乙锭)的渗透性增加速率,IC50 为 13.1 nM[4]。
|
||
体内研究 (In Vivo) |
植入 TAMR-MCF-7 细胞的五周龄 BALB/c 无胸腺裸鼠在接受 KN62(5?mg/kg/天;腹膜内;每周 3 次,持续六周)后显示肝转移肿瘤负荷显着降低)[3]。 ?ZnCl2 (10 mg/kg, po) 不表现出抗抑郁样行为,KN-62 (1 µg/位点, icv) 也不表现出抗抑郁样行为[5]。
|
||
酶活实验 |
磷脂酶D测定[1]
淋巴细胞(1x10~7/ml)与[3 H]-油酸(2±5 mCi ml71,speci®c活性10 Ci mmol71)在RPMI-1640培养基中培养20±24小时,该培养基补充了庆大霉素(40 mg ml71)、10%热灭活胎牛血清(FCS),温度为378C,用于标记膜磷脂。标记的细胞在HEPES缓冲盐水中洗涤两次,然后在HEPES补充盐水或含有HEPES 10 mM、pH 7.4、牛血清白蛋白(BSA)1 g l71和D-葡萄糖5 mM和CaCl2 1 mM的150 mM KCl培养基中进行®nal洗涤。将含有1.16107 ml71淋巴细胞的3 ml等分试样加热至378C,与或不与KN-62或KN-04(1 nM±500 nM)一起孵育5分钟,然后将900 ml等分试样加入100 ml丁醇(®nal浓度30 mM)中再孵育5 min,并在持续存在的情况下用1 mM ATP刺激15 min。抑制剂或稀释剂。通过加入1ml 20mM MgCl2,然后离心并加入1ml冰冷的甲醇来终止磷脂酶D反应。如前所述(Gargett等人,1996),在48℃的氮气下将膜脂质提取到氯仿/HCl中,并在饱和条件下用硅胶薄层色谱法(t.l.c.)用乙酸乙酯/异辛烷/乙酸/水(13:2:3:10,v/v)溶剂系统进行分离。通过放射自显影定位样品斑点,并通过真实标准鉴定[3H]-磷脂酰丁醇([3H]-PBut)斑点。将[3H]-PBut和[3H]-磷脂斑点刮入闪烁液(甲苯中的PPO,4 g l71)中,并在液体闪烁计数器中计数。[3H]-PBut的量以3H-标记的细胞1484总量的百分比表示。C.E.Gargett和J.S.WileyKN-62是一种强效的P2Z受体拮抗剂磷脂。磷脂酶D测定一式三份,数据表示为平均值+标准误差平均值。 |
||
细胞实验 |
流式细胞术测定乙锭浓度[1]
将淋巴细胞(1x10~8/ml)在1ml含有HEPES 10mM、pH 7.4、BSA 1g l71和D-葡萄糖5mM的150mM KCl培养基中稀释至1x10~6/ml。细胞悬浮液在378C下与或不与KN-62或KN-04(1nM±1mM)一起孵育5分钟,然后加入ATP(500mM),再孵育2分钟,然后添加乙锭(25mM)。在抑制剂或稀释剂的持续存在下,在添加乙锭前30秒和添加乙锭后5分钟内,从搅拌和温度控制(378C)的样品中收集荧光信号。使用库尔特Elite流式细胞仪,在488 nm的氩激光激发下,在连续6 s的间隔内收集淋巴细胞相关荧光信号的直方图(256个通道)。使用590 nm长通滤光片收集荧光发射。然后计算连续6秒间隔收集的每个直方图的荧光强度平均通道,并绘制时间图。 |
||
动物实验 |
|
||
参考文献 | |||
其他信息 |
5-isoquinolinesulfonic acid [4-[(2S)-2-[5-isoquinolinylsulfonyl(methyl)amino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl] ester is a member of piperazines.
1. Extracellular adenosine 5'-triphosphate (ATP) is an agonist for a P2Z receptor on human lymphocytes which mediates opening of a cation-selective ion channel, activation of phospholipase D and shedding of the adhesion molecule, L-selectin, from the cell surface. The isoquinolinesulphonamides, KN-62, (1-[N, O-bis(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4-phenylpiperaz ine), a selective antagonist of Ca2+/calmodulin-dependent protein kinase II (CaMKII), and KN-04, (N-[1-[N-methyl-p-(5 isoquinoline sulphonyl)benzyl]-2-(4 phenylpiperazine)ethyl]-5-isoquinolinesulphonamide) an inactive analogue, were used to investigate the possible role of CaMKII in these diverse effects of extracellular ATP. 2. KN-62 potently antagonized ATP-stimulated Ba2+ influx into fura-2 loaded human lymphocytes with an IC50 of 12.7 +/- 1.5 nM (n = 3) and complete inhibition of the flux at a concentration of 500 nM. Similarly, KN-62 inhibited ATP-stimulated ethidium+ uptake, measured by time resolved flow cytometry, with an IC50 of 13.1 +/- 2.6 nM (n = 4) and complete inhibition of the flux at 500 nM. 3. KN-04 antagonized ATP-stimulated Ba2+ influx with an IC50 of 17.3 +/- 2.7 nM (n = 3). Similarly, KN-04 inhibited ATP-stimulated ethidium+ uptake with an IC50 of 37.2 +/- 8.9 nM (n = 4). Both fluxes were completely inhibited at 500 nM KN-04. 4. ATP-stimulated phospholipase D activity, measured in [3H]-oleic acid-labelled lymphocytes by the transphosphatidylation reaction, was antagonized by KN-62 and KN-04, with 50% inhibition at 5.9 +/- 1.2 and 9.7 +/- 2.8 nM (n = 3), respectively. Both KN-62 and KN-04 inhibited ATP-stimulated shedding of L-selectin, measured by flow cytometric analysis of cell surface L-selectin, with IC50 values of 31.5 +/- 4.5 and 78.7 +/- 10.8 nM (n = 3), respectively. Neither of the isoquinolinesulphonamides (500 nM) inhibited phorbol ester- or ionomycin-stimulated phospholipase D activity or phorbol ester-induced shedding of L-selectin. 5. The inhibitory effect of KN-62 or KN-04 on P2Z-mediated responses was slow in onset (5 min) and only partially reversed by washing the cells. 6. Both KN-62 and KN-04 (at 500 nM) had no effect on uridine 5'-triphosphate (UTP)-stimulated Ca2+ transients in fura-2 loaded human neutrophils, a response which is mediated by the P2Y2 receptor. 7. Thus, KN-62 and KN-04 are potent antagonists of the P2Z receptor and at nanomolar concentrations inhibit all known responses mediated by the P2Z receptor of human lymphocytes. In contrast, KN-62 and KN-04 had no effect on responses mediated by the P2Y2 receptor of neutrophils. Moreover, since KN-62 and KN-04 are almost equipotent, the P2Z-mediated responses do not involve CaMKII, but indicate that the isoquinolinesulphonamides are potent and direct inhibitors of the P2Z-receptor.[1] Novel analogs of 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine (KN-62,1) were synthesized and found to be potent antagonists in a functional assay, inhibition of ATP-induced K+ efflux in HEK293 cells expressing recombinant human P2X7 receptors. Antagonism of murine P2X7 receptors was also observed. The analogs consisted of L-tyrosine derivatives, of the general structure R1-Tyr(OR2)-piperazinyl-R3, in which three positions were systematically varied in structure through facile acylation reactions. Each of the three positions was optimized in sequence through parallel synthesis alternating with biological evaluation, leading to the identification and optimization of potent P2X7 antagonists. The optimal groups at R1 were found to be large hydrophobic groups, linked to the α-amino position through carbamate, amide, or sulfonamide groups. The benzyloxycarbonyl (Cbz) group was preferred over most sulfonamides and other acyl groups examined, except for quinoline sulfonyl. At R2, an arylsulfonate ester was preferred, and the order of potency was p-tolyl, p-methoxyphenyl, phenyl > α-naphthyl, β-naphthyl. A benzoyl ester was of intermediate potency. Aliphatic esters and carbonate derivatives at the tyrosyl phenol were inactive, while a tyrosyl O-benzyl ether was relatively potent. The most potent P2X7 receptor antagonists identified in this study contained Cbz at the R1 position, an aryl sulfonate at the R2 position, and various acyl groups at the R3 position. At R3, t-butyloxycarbonyl- and benzoyl groups were preferred. The opening of the piperazinyl ring to an ethylene diamine moiety abolished antagonism. In concentration-response studies, a di-isoquinolinyl, Boc derivative, 4 (MRS2306), displayed an IC50 value of 40 nM as an antagonist of P2X7 receptor-mediated ion flux and was more potent than the reference compound 1. Nα-Cbz, Boc-piperazinyl derivatives, 11 (MRS2317), 22 (MRS2326), and 41 (MRS2409) were less potent than 1, with IC50 values of 200-300 nM.[4] Considering that intracellular signaling pathways that modulate brain BDNF are implicated in antidepressant responses, this study investigated whether signaling pathway inhibitors upstream to BDNF might influence the antidepressant-like effect of zinc, a metal that has been shown to display antidepressant properties. To this end, the influence of i.c.v. administration of H-89 (1μg/site, PKA inhibitor), KN-62 (1μg/site, CAMKII inhibitor), chelerythrine (1μg/site, PKC inhibitor), PD98059 (5μg/site, MEK1/2 inhibitor), U0126 (5μg/site, MEK1/2 inhibitor), LY294002 (10nmol/site, PI3K inhibitor) on the reduction of immobility time in the tail suspension test (TST) elicited by ZnCl2 (10mg/kg, p.o.) was investigated. Moreover, the effect of the combination of sub-effective doses of ZnCl2 (1mg/kg, p.o.) and AR-A014418 (0.001μg/site, GSK-3β inhibitor) was evaluated. The occurrence of changes in CREB phosphorylation and BDNF immunocontent in the hippocampus and prefrontal cortex of mice following ZnCl2 treatment was also investigated. The anti-immobility effect of ZnCl2 in the TST was prevented by treatment with PKA, PKC, CAMKII, MEK1/2 or PI3K inhibitors. Furthermore, ZnCl2 in combination with AR-A014418 caused a synergistic anti-immobility effect in the TST. None of the treatments altered locomotor activity of mice. ZnCl2 treatment caused no alteration in CREB phosphorylation and BDNF immunocontent. The results extend literature data regarding the mechanisms underlying the antidepressant-like action of zinc by indicating that its antidepressant-like effect may be dependent on the activation of PKA, CAMKII, PKC, ERK, and PI3K/GSK-3β pathways. However, zinc is not able to acutely increase BDNF in the hippocampus and prefrontal cortex.[5] |
分子式 |
C38H35N5O6S2
|
|
---|---|---|
分子量 |
721.84
|
|
精确质量 |
721.202
|
|
元素分析 |
C, 63.23; H, 4.89; N, 9.70; O, 13.30; S, 8.88
|
|
CAS号 |
127191-97-3
|
|
相关CAS号 |
|
|
PubChem CID |
5312126
|
|
外观&性状 |
Light yellow to yellow solid powder
|
|
密度 |
1.4±0.1 g/cm3
|
|
沸点 |
964.7±75.0 °C at 760 mmHg
|
|
熔点 |
92-94°C
|
|
闪点 |
537.3±37.1 °C
|
|
蒸汽压 |
0.0±0.3 mmHg at 25°C
|
|
折射率 |
1.686
|
|
LogP |
5.23
|
|
tPSA |
146.84
|
|
氢键供体(HBD)数目 |
0
|
|
氢键受体(HBA)数目 |
10
|
|
可旋转键数目(RBC) |
10
|
|
重原子数目 |
51
|
|
分子复杂度/Complexity |
1370
|
|
定义原子立体中心数目 |
1
|
|
SMILES |
S(C1=C([H])C([H])=C([H])C2C([H])=NC([H])=C([H])C1=2)(N(C([H])([H])[H])[C@@]([H])(C([H])([H])C1C([H])=C([H])C(=C([H])C=1[H])OS(C1=C([H])C([H])=C([H])C2C([H])=NC([H])=C([H])C1=2)(=O)=O)C(N1C([H])([H])C([H])([H])N(C2C([H])=C([H])C([H])=C([H])C=2[H])C([H])([H])C1([H])[H])=O)(=O)=O
|
|
InChi Key |
RJVLFQBBRSMWHX-DHUJRADRSA-N
|
|
InChi Code |
InChI=1S/C38H35N5O6S2/c1-41(50(45,46)36-11-5-7-29-26-39-19-17-33(29)36)35(38(44)43-23-21-42(22-24-43)31-9-3-2-4-10-31)25-28-13-15-32(16-14-28)49-51(47,48)37-12-6-8-30-27-40-20-18-34(30)37/h2-20,26-27,35H,21-25H2,1H3/t35-/m0/s1
|
|
化学名 |
(S)-4-(2-(N-methylisoquinoline-5-sulfonamido)-3-oxo-3-(4-phenylpiperazin-1-yl)propyl)phenyl isoquinoline-5-sulfonate
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (3.46 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (3.46 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.3853 mL | 6.9267 mL | 13.8535 mL | |
5 mM | 0.2771 mL | 1.3853 mL | 2.7707 mL | |
10 mM | 0.1385 mL | 0.6927 mL | 1.3853 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。