Levodopa (L-DOPA)

别名:
目录号: V1252 纯度: ≥98%
左旋多巴(L-DOPA、Dopar、Sinemet、Pharmacopa、Atamet、Stalevo、Madopar、Prolopa)是 DOPA 的 L 异构体,是具有抗帕金森病作用的神经递质多巴胺、去甲肾上腺素(去甲肾上腺素)和肾上腺素(肾上腺素)的前体活动。
Levodopa (L-DOPA) CAS号: 59-92-7
产品类别: Dopamine Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
50mg
100mg
250mg
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Levodopa (L-DOPA):

  • L-DOPA-2,5,6-d3 (levodopa-d3)
  • L-DOPA-d6 (Levodopa-d6; 3,4-Dihydroxyphenylalanine-d6)
  • Levodopa sodium
  • L-DOPA-13C6 (levodopa-13C6; Levodopa-13C6; 3,4-Dihydroxyphenylalanine-13C6)
  • L-DOPA-13C (levodopa-13C)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
左旋多巴(L-DOPA、Dopar、Sinemet、Pharmacopa、Atamet、Stalevo、Madopar、Prolopa)是 DOPA 的 L 异构体,是神经递质多巴胺、去甲肾上腺素(去甲肾上腺素)和肾上腺素(肾上腺素)的前体,具有抗帕金森病活动。它已被用于治疗帕金森氏症症状。左旋多巴是一种化学物质,是人类、某些动物和植物正常生物学的一部分而制造和使用的。一些动物和人类通过氨基酸 L-酪氨酸的生物合成来制造它。此外,左旋多巴本身介导大脑和中枢神经系统释放神经营养因子。
生物活性&实验参考方法
靶点
Dopamine receptor
体外研究 (In Vitro)
体外活性:左旋多巴在 25-200 μM 浓度下,在胎鼠中脑培养物中产生剂量依赖性的 3H-DA 摄取减少。左旋多巴会导致活细胞和酪氨酸羟化酶 (TH) 阳性神经元数量减少,并破坏整个神经炎网络。在缺乏多巴胺的情况下,左旋多巴通过过度抑制壳核-苍白球 (GPe) 投射的神经元以及随后对苍白球 (GPe) 的去抑制来诱发运动障碍。左旋多巴导致苍白球 (GPi) 中细胞色素氧化酶信使 RNA 表达减少。
体内研究 (In Vivo)
左旋多巴会引起由神经毒素 MPTP 诱发的帕金森病猴子出现多种异常运动。左旋多巴给药导致 6-OHDA 损伤大鼠 CdPu 中多巴胺 D3 受体表达的异位诱导。左旋多巴 (50 mg/kg) 通过激活完整大鼠的多巴胺 D1/D2 受体,增加整个基底神经节的 anandamide 浓度。左旋多巴在病变大鼠中产生越来越严重的口舌不自主运动,这种运动被大麻素激动剂 R(+)-WIN55,212-2 (1 mg/kg) 减弱。左旋多巴给药可逆转严重病变大鼠中 D2 多巴胺受体的上调,这提供了左旋多巴在基底神经节达到生物活性浓度的证据。
细胞实验
左旋多巴是一种用于帕金森病(PD)患者的多巴胺(DA)前体,在25-200 x 10(-6)M的浓度下,会导致胎鼠中脑培养物中3H-DA摄取的剂量依赖性减少。此外,在培养基中醌水平升高的同时,观察到活细胞和酪氨酸羟化酶(TH)阳性神经元数量的减少,以及整个神经网络的破坏。抗坏血酸(AA)消除了醌的过度生产,部分阻止了这些影响。尽管左旋多巴在体内的神经毒性尚未得到证实,但AA可能会降低PD患者内源性或移植DA神经元的脆弱性[1]。
动物实验
7-week-old C57BL/6J mice
20 mg/kg
Orally
Animal Surgery and Treatments. Wistar male rats (180–200 g, Iffa Credo) were anesthetized with pentobarbital (50 mg/kg, i.p.) and infused over 8 min with 6-OHDA (8 μg in 4 μl of 0.05% ascorbic acid in saline) at coordinates A = −3.8 mm, L = 1.5 mm, H = −8.5 mm. Three weeks later, they received twice a day, and for various periods of time, i.p. injections of vehicle, levodopa (in all experiments as l-DOPA methyl ester, 50 mg/kg, in combination with benserazide, a peripheral dopa decarboxylase inhibitor, 12.5 mg/kg) or levodopa plus SCH 23390 (0.5 mg/kg) or plus SKF 38393 (10 mg/kg), bromocriptine (10 mg/kg), quinpirole (0.1 mg/kg).[3]
The majority of Parkinson's disease patients undergoing levodopa therapy develop disabling motor complications (dyskinesias) within 10 years of treatment. Stimulation of cannabinoid receptors, the pharmacological target of Delta 9-tetrahydrocannabinol, is emerging as a promising therapy to alleviate levodopa-associated dyskinesias. However, the mechanisms underlying this beneficial action remain elusive, as do the effects exerted by levodopa therapy on the endocannabinoid system. Although levodopa is known to cause changes in CB1 receptor expression in animal models of Parkinson's disease, we have no information on whether this drug alters the brain concentrations of the endocannabinoids anandamide and 2-arachidonylglycerol. To address this question, we used an isotope dilution assay to measure endocannabinoid levels in the caudate-putamen, globus pallidus and substantia nigra of intact and unilaterally 6-OHDA-lesioned rats undergoing acute or chronic treatment with levodopa (50 mg/kg). In intact animals, systemic administration of levodopa increased anandamide concentrations throughout the basal ganglia via activation of dopamine D1/D2 receptors. In 6-OHDA-lesioned rats, anandamide levels were significantly reduced in the caudate-putamen ipsilateral to the lesion; however, neither acute nor chronic levodopa treatment affected endocannabinoid levels in these animals. In lesioned rats, chronic levodopa produced increasingly severe oro-lingual involuntary movements which were attenuated by the cannabinoid agonist R(+)-WIN55,212-2 (1 mg/kg). This effect was reversed by the CB1 receptor antagonist rimonabant (SR141716A). These results indicate that a deficiency in endocannabinoid transmission may contribute to levodopa-induced dyskinesias and that these complications may be alleviated by activation of CB1 receptors.[4]
Orally administered levodopa remains the most effective symptomatic treatment for Parkinson's disease (PD). The introduction of levodopa therapy is often delayed, however, because of the fear that it might be toxic for the remaining dopaminergic neurons and, thus, accelerate the deterioration of patients. However, in vivo evidence of levodopa toxicity is scarce. We have evaluated the effects of a 6-month oral levodopa treatment on several dopaminergic markers, in rats with moderate or severe 6-hydroxydopamine-induced lesions of mesencephalic dopamine neurons and sham-lesioned animals. Counts of tyrosine hydroxylase (TH)-immunoreactive neurons in the substantia nigra and ventral tegmental area showed no significant difference between levodopa-treated and vehicle-treated rats. In addition, for rats of the sham-lesioned and severely lesioned groups, immunoradiolabeling for TH, the dopamine transporter (DAT), and the vesicular monoamine transporter (VMAT2) at the striatal level was not significantly different between rats treated with levodopa or vehicle. It was unexpected that quantification of immunoautoradiograms showed a partial recovery of all three dopaminergic markers (TH, DAT, and VMAT2) in the denervated territories of the striatum of moderately lesioned rats receiving levodopa. Furthermore, the density of TH-positive fibers observed in moderately lesioned rats was higher in those treated chronically with levodopa than in those receiving vehicle. Last, that chronic levodopa administration reversed the up-regulation of D2 dopamine receptors seen in severely lesioned rats provided evidence that levodopa reached a biologically active concentration at the basal ganglia. Our results demonstrate that a pharmacologically effective 6-month oral levodopa treatment is not toxic for remaining dopamine neurons in a rat model of PD but instead promotes the recovery of striatal innervation in rats with partial lesions.[5]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Orally inhaled levodopa reaches a peak concentration in 0.5 hours with a bioavailability than is 70% that of the immediate release levodopa tablets with a peripheral dopa decarboxylase inhibitor like carbidopa or benserazide.
After 48 hours, 0.17% of an orally administered dose is recovered in stool, 0.28% is exhaled, and 78.4% is recovered in urine
168L for orally inhaled levodopa.
Intravenously administered levodopa is cleared at a rate of 14.2mL/min/kg in elderly patients and 23.4mL/min/kg in younger patients. When given carbidopa, the clearance of levodopa was 5.8mL/min/kg in elderyly patients and 9.3mL/min/kg in younger patients.
...DRUG...MAY APPEAR IN MILK.
AFTER IP INJECTION INTO MICE, BIOTRANSFORMATION OF 60% OF RADIOACTIVELY LABELLED DL-DOPA TAKES PLACE WITHIN 10 MIN, & PEAK DOPAMINE LEVELS ARE REACHED 20 MIN AFTER ADMIN. ...APPROX 0.1% OF DOSE WAS PRESENT IN THE BRAIN AS (14)C-L-DOPA OR (14)C-DOPAMINE. /DL-DOPA/
MORE THAN 95% OF LEVODOPA IS DECARBOXYLATED IN PERIPHERY BY WIDELY DISTRIBUTED EXTRACEREBRAL AROMATIC L-AMINO ACID DECARBOXYLASE. ...LITTLE UNCHANGED DRUG REACHES CEREBRAL CIRCULATION & PROBABLY LESS THAN 1% PENETRATES INTO CNS.
MOST IS CONVERTED TO DOPAMINE... DOPAMINE METABOLITES ARE RAPIDLY EXCRETED IN URINE, ABOUT 80% OF RADIOACTIVELY LABELED DOSE BEING RECOVERED WITHIN 24 HR. ... THESE METABOLITES /3,4-DIHYDROXYPHENYLACETIC ACID & 3-METHOXY-4-HYDROXYPHENYLACETIC ACID/, AS WELL AS SMALL AMT OF LEVODOPA & DOPAMINE, ALSO APPEAR IN CEREBROSPINAL FLUID.
For more Absorption, Distribution and Excretion (Complete) data for LEVODOPA (11 total), please visit the HSDB record page.
Metabolism / Metabolites
Levodopa is either converted to dopamine by aromatic-L-amino-acid decarboxylase or O-methylated to 3-O-methyldopa by catechol-O-methyltransferase. 3-O-methyldopa cannot be metabolized to dopamine. Once levodopa is converted to dopamine, it is converted to sulfated or glucuronidated metabolites, epinephrine E, or homovanillic acid through various metabolic processes. The primary metabolites are 3,4-dihydroxyphenylacetic acid (13-47%) and homovanillic acid (23-39%).
MOST IS CONVERTED TO DOPAMINE... BIOTRANSFORMATION OF DOPAMINE PROCEEDS RAPIDLY...EXCRETION PRODUCTS, 3,4-DIHYDROXYPHENYLACETIC ACID...& 3-METHOXY-4-HYDROXYPHENYLACETIC ACID... SOME BIOCHEMICAL EVIDENCE INDICATES THAT ACCELERATION OF LEVODOPA METABOLISM OCCURS DURING PROLONGED THERAPY, POSSIBLY DUE TO ENZYME INDUCTION.
MORE THAN 95%...IS DECARBOXYLATED...BY...AROMATIC L-AMINO ACID DECARBOXYLASE. ... A SMALL AMT /OF L-DOPA/ IS METHYLATED TO 3-O-METHYL-DOPA... MOST IS CONVERTED TO DOPAMINE, SMALL AMT OF WHICH IN TURN ARE METABOLIZED TO NOREPINEPHRINE & EPINEPHRINE.
...IS ESTIMATED THAT ABOUT THREE FOURTHS OF DIETARY METHIONINE IS UTILIZED FOR METABOLISM OF LARGE THERAPEUTIC DOSES OF LEVODOPA.
LEVODOPA (L-DOPA) IS FORMED IN MAMMALS FROM L-TYROSINE AS INTERMEDIARY METABOLITE IN ENZYMATIC SYNTHESIS OF CATECHOLAMINES.
95% of an administered oral dose of levodopa is pre-systemically decarboxylated to dopamine by the L-aromatic amino acid decarboxylase (AAAD) enzyme in the stomach, lumen of the intestine, kidney, and liver. Levodopa also may be methoxylated by the hepatic catechol-O-methyltransferase (COMT) enzyme system to 3-O-methyldopa (3-OMD), which cannot be converted to central dopamine.
Half Life: 50 to 90 minutes
Biological Half-Life
2.3 hours for orally inhaled levodopa. Oral levodopa has a half life of 50 minutes but when combined with a peripheral dopa decarboxylase inhibitor, the half life is increased to 1.5 hours.
THE HALF-LIFE IN PLASMA IS SHORT (1-3 HR).
毒性/毒理 (Toxicokinetics/TK)
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Limited data indicate that levodopa is poorly excreted into breastmilk and that the sustained-release product may result in a smaller amount of drug transferred to the breastfed infant than with the immediate-release product. Several studies indicate that levodopa can decrease serum prolactin during lactation. The prolactin level in a mother with established lactation may not affect her ability to breastfeed. The effect of long-term use of levodopa on breastfeeding has not been adequately evaluated, although some mothers were able to successfully breastfeed her infant without apparent harm while using relatively low doses of levodopa and carbidopa for Parkinson's disease.
◉ Effects in Breastfed Infants
One mother with Parkinson's disease took sustained-release levodopa 200 mg and carbidopa 50 mg 4 times daily. She successfully breastfed her infant whose development was normal at 2 years of age.
A 37-year-old Israeli woman with Parkinson's disease became pregnant while taking a continuous infusion of levodopa 20 mg/mL and carbidopa 5 mg/mL gel. She breastfed her infant for 3 months while receiving the drug, although the extent of breastfeeding and the dosage of the gel is not clear from the paper. At 10 months of age, the infant's psychomotor development was deemed to be normal.
◉ Effects on Lactation and Breastmilk
Levodopa decreases serum prolactin in normal women and those with hyperprolactinemia and can suppress inappropriate lactation in galactorrhea, although not consistently. The prolactin level in a mother with established lactation may not affect her ability to breastfeed.
One mother with Parkinson's disease took sustained-release levodopa 200 mg and carbidopa 50 mg 4 times daily. She successfully breastfed her infant.
On postpartum day 3, 5 women were given a single oral dose of 500 mg of levodopa or bromocriptine 5 mg followed by a single oral dose of metoclopramide 10 mg 3 hours later. Bromocriptine suppressed basal serum prolactin to a greater extent than levodopa. Over the next 3 hours, serum prolactin increased after metoclopramide in the patients who received levodopa, but not in those who received bromocriptine.
Six women who were 2 to 4 days postpartum, but were not nursing, were given 500 mg of levodopa orally on one day and 100 mg of levodopa plus 35 mg of carbidopa orally on the next day. Both regimens suppressed basal serum prolactin levels. However, levodopa alone caused an 78% decrease in prolactin while the lower dose combination produced only a 51% decrease. The maximal effect occurred about 2 hours after the dose with both regimens.
Seven women in the first week postpartum who were breastfeeding about 7 times daily were given levodopa 500 mg orally and their serum prolactin responses was studied. The following day, they started carbidopa 50 mg orally every 6 hours for 2 days. On the third day, they received a single dose of carbidopa 50 mg plus levodopa 125 mg orally. Decreases in basal serum prolactin occurred by 30 minutes after the levodopa and after 45 minutes with the combination. Decreases were maximum at 120 minutes after the dose and were 62% with levodopa alone and 48% with the combination, although the difference between the 2 regimens was not statistically significant.
A 37-year-old Israeli woman with Parkinson's disease became pregnant while taking a continuous infusion of levodopa 20 mg/mL and carbidopa 5 mg/mL gel. She breastfed her infant for 3 months while receiving the drug, although the extent of breastfeeding and the dosage of the gel is not clear from the paper.
Protein Binding
Levodopa binding to plasma proteins is negligible.
参考文献

[1]. Neuroreport . 1993 Apr;4(4):438-40.

[2]. J Antimicrob Chemother . 2004 Jun;53(6):1086-9.

[3]. Proc Natl Acad Sci U S A, 1997, 94(7), 3363-3367.

[4]. Eur J Neurosci . 2003 Sep;18(6):1607-14.

[5]. Ann Neurol . 1998 May;43(5):561-75.

其他信息
Levodopa can cause developmental toxicity according to state or federal government labeling requirements.
L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinson's disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion.
Levodopa is a prodrug of dopamine that is administered to patients with Parkinson's due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinson's. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975.
3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Levodopa is an Aromatic Amino Acid.
Levodopa has been reported in Mucuna macrocarpa, Amanita muscaria, and other organisms with data available.
Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinson's disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS.
L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue.
The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem]

L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.
See also: Melevodopa (is active moiety of); Carbidopa; Levodopa (component of); Carbidopa; entacapone; levodopa (component of) ... View More ...
Drug Indication
Levodopa on its own is formulated as an oral inhalation powder indicated for intermittent treatment of off episodes in Parkinson's patients who are already being treated with carbidopa and levodopa. Levodopa is most commonly formulated as an oral tablet with a peripheral dopa decarboxylase inhibitor indicated for treatment of Parkinson's disease, post-encephalitic parkinsonism, and symptomatic parkinsonism following carbon monoxide intoxication or manganese intoxication.
FDA Label
Inbrija is indicated for the intermittent treatment of episodic motor fluctuations (OFF episodes) in adult patients with Parkinson's disease (PD) treated with a levodopa/dopa-decarboxylase inhibitor.
Treatment of Parkinson's disease
Mechanism of Action
Levodopa by various routes crosses the blood brain barrier, is decarboxylated to form dopamine. This supplemental dopamine performs the role that endogenous dopamine cannot due to a decrease of natural concentrations and stimulates dopaminergic receptors.
MOST WIDELY ACCEPTED THEORY IS THAT LEVODOPA INCR LEVEL OF DOPAMINE & THUS ACTIVATION OF DOPAMINE RECEPTORS IN EXTRA-PYRAMIDAL CENTERS IN THE BRAIN (PRIMARILY IN CAUDATE NUCLEUS & SUBSTANTIA NIGRA).
The present data indicate that the major effects observed after administration of exogenous levodopa are not due to a direct action of levodopa on dopamine receptors, or to extrastriatal release of dopamine, but to conversion of levodopa to dopamine by serotonergic terminals and probably some intrastriatal cells.
EFFECTS OF LEVODOPA ON HUMAN & MURINE MELANOMA CELLS EXAMINED. WHEN EXPONENTIALLY GROWING CELLS WERE EXPOSED TO L-DOPA, CHARACTERISTIC INHIBITION OF THYMIDINE INCORPORATION OBSERVED.
IN RATS, DOPAMINERGIC AGONISTS ALL CAUSED DECR IN SERUM PROLACTIN LEVELS.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C9H11NO4
分子量
197.19
精确质量
197.068
元素分析
C, 54.82; H, 5.62; N, 7.10; O, 32.46
CAS号
59-92-7
相关CAS号
L-DOPA-2,5,6-d3; 53587-29-4; L-DOPA-d6; 713140-75-1; L-DOPA sodium; 63302-01-2; L-DOPA-13C6; 201417-12-1; L-DOPA-13C; 586971-29-1
PubChem CID
6047
外观&性状
White to off-white solid powder
密度
1.5±0.1 g/cm3
沸点
448.4±45.0 °C at 760 mmHg
熔点
276-278 °C(lit.)
闪点
225.0±28.7 °C
蒸汽压
0.0±1.1 mmHg at 25°C
折射率
1.655
LogP
-0.22
tPSA
103.78
氢键供体(HBD)数目
4
氢键受体(HBA)数目
5
可旋转键数目(RBC)
3
重原子数目
14
分子复杂度/Complexity
209
定义原子立体中心数目
1
SMILES
O([H])C1=C(C([H])=C([H])C(=C1[H])C([H])([H])[C@@]([H])(C(=O)O[H])N([H])[H])O[H]
InChi Key
WTDRDQBEARUVNC-LURJTMIESA-N
InChi Code
InChI=1S/C9H11NO4/c10-6(9(13)14)3-5-1-2-7(11)8(12)4-5/h1-2,4,6,11-12H,3,10H2,(H,13,14)/t6-/m0/s1
化学名
(2S)-2-amino-3-(3,4-dihydroxyphenyl)propanoic acid
别名

Levodopa, 3,4-Dihydroxyphenylalanin; L-DOPA; Dopar; Sinemet; Pharmacopa; Atamet; Stalevo; Madopar; 3,4-dihydroxy-L-phenylalanine; Dopar; 3-Hydroxy-L-tyrosine; Bendopa; Larodopa; Prolopa

HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: (1). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。  (2). 该产品在溶液状态不稳定,请现配现用。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: <1 mg/mL
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: 3.33 mg/mL (16.89 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。 (<60°C).

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.0713 mL 25.3563 mL 50.7125 mL
5 mM 1.0143 mL 5.0713 mL 10.1425 mL
10 mM 0.5071 mL 2.5356 mL 5.0713 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04990284 Active
Recruiting
Drug: Opicapone
Drug: L-DOPA/DDCI
Parkinson Disease Bial - Portela C S.A. November 29, 2021 Phase 4
NCT02480803 Active
Recruiting
Device: deep brain stimulation
Drug: Continuous intrajejunal
infusion of levodopa-carbidopa
Parkinson's Disease Academisch Medisch Centrum -
Universiteit van Amsterdam
(AMC-UvA)
December 19, 2014 Phase 4
NCT03243552 Active
Recruiting
Drug: L-DOPA versus Placebo
Behavioral: Social Skills Training
ASD University of California, Los
Angeles
June 1, 2017 Phase 2
NCT04469959 Recruiting Drug: L-Dopa
Drug: Placebo
Levodopa
Gait Impairment
Vanderbilt University Medical
Center
February 15, 2021 Phase 2
NCT06075771 Recruiting Drug: Carbidopa Levodopa
Drug: Placebo
Anhedonia
Depression
Emory University November 21, 2023 Phase 4
生物数据图片
  • Changes in D3 receptor binding elicited by repeated levodopa treatments of 6-OHDA-lesioned rats. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
  • Progressive changes in D3-receptor binding and levodopa-induced rotations and neuropeptide mRNAs in CdPu of unilaterally 6-OHDA-lesioned rats following repeated treatment with levodopa and withdrawal. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
  • Effects of nafadotride, a preferential D3-receptor antagonist on levodopa-induced rotations. Proc Natl Acad Sci U S A . 1997 Apr 1;94(7):3363-7.
相关产品
联系我们