规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
Cysteine proteases; CANP; Cathepsin C
|
---|---|
体外研究 (In Vitro) |
体外活性:Loxistatin Acid (E-64C) 作为硫醇蛋白酶抑制剂,可抑制完整血小板中的钙蛋白酶活性。 E-64C 抑制神经元嗜铬细胞调节的分泌囊泡中的 β 分泌酶活性,并减少 Aβ 的产生,这表明了阿尔茨海默病的治疗策略。
E-64d,E-64c的膜渗透性衍生物,硫醇蛋白酶抑制剂(Tamai等人(1986)J.Pharmacobio Dyn。9672-677),测试其抑制完整血小板钙蛋白酶活性的能力。钙蛋白酶活性是通过肌动蛋白结合蛋白和塔林(钙蛋白酶的两种已知底物)的蛋白水解来测量的。在裂解前用E-64c/(非渗透性)或E-64d孵育血小板可防止裂解后的蛋白水解。当血小板与E-64c/Loxistatin Acid或E-64d一起孵育,然后在裂解前洗涤以去除药物时,只有E-64d抑制了蛋白水解。当血小板与E-64c/Loxistatin Acid或E-64d一起孵育,然后用A23187加钙(一种激活板内钙蛋白酶的治疗方法)激活时,只有E-64d抑制了蛋白水解。这些结果表明,E-64d可以进入完整的细胞并抑制钙蛋白酶。[1] Z-Val-Lys-Met-MCA切割活性的DTT敏感性表明,半胱氨酸蛋白酶的参与通常需要还原条件。半胱氨酸蛋白酶抑制剂Loxistatin Acid完全抑制嗜铬囊泡β-分泌酶活性;半胱氨酸蛋白酶抑制剂C和对羟基苯甲酸汞(PHMB)也抑制了该活性。苯甲基磺酰氟(PMSF)是一种丝氨酸蛋白酶抑制剂,具有部分抑制作用(Hook等人,2002)。糜蛋白酶抑制剂的抑制与半胱氨酸或丝氨酸蛋白酶活性有关。天冬氨酸和金属蛋白酶抑制剂的作用很小。嗜铬小泡中的β-分泌酶活性不受他汀类取代肽抑制剂的抑制(Hook等人,2002),该抑制剂代表瑞典突变型β-分泌酶类切割位点(Sinha等人,1999),表明嗜铬小囊泡β-分泌蛋白酶活性对切割大多数AD患者中表达的野生型β-分泌物位点具有特异性(Price等人,1998;Selkoe,19982001)。显然,E64c/Loxistatin Acid的显著抑制表明半胱氨酸蛋白酶在嗜铬囊泡中对β-分泌酶活性起作用。[4] 半胱氨酸蛋白酶作为β-分泌酶活性的证明:调节分泌泡中Aβ的产生和细胞APP的裂解[4] E64c/Loxistatin Acid抑制分离的完整分泌囊泡中Aβ(1-40)的产生,进一步说明了半胱氨酸蛋白酶活性对Aβ(1-40)产生的预测作用(图5a)。此外,当嗜铬细胞用E64c/Loxistatin Acid的细胞渗透性类似物E64d处理时,APP的12-14kDaβ-分泌酶产物的产生受到抑制(图5b;Hook等人,2002)。这些结果暗示半胱氨酸蛋白酶在神经元嗜铬细胞中APP的β分泌酶加工中起作用[4]。 |
体内研究 (In Vivo) |
营养不良鸡胸肌中组织蛋白酶B和组织蛋白酶H的总活性(413号线)比对照鸡(412号线)高约两倍,营养不良鸡该肌肉中组织蛋白酶D的活性高约3倍。当将合成的强效巯基抑制剂E-64-c/Loxistatin Acid以不同剂量每天皮下注射到营养不良的鸡(L413)中80天时,组织蛋白酶B和组织蛋白酶H的活性降低到对照鸡的水平(第412行),但组织蛋白酶D的活性没有变化,组织蛋白酶D在体外对LoxistatinAcid/E-64-c不敏感。[2]
大鼠左侧大脑中动脉闭塞3天后,左侧大脑半球的微管相关蛋白2(MAP2)水平显著降低至对照水平的29+/-16.3%。由于MAP2是钙蛋白酶的底物之一,因此合成钙蛋白酶抑制剂E-64c/Loxistatin Acid以400mg/kg的剂量每天两次给药,持续3天,第一剂在缺血发生前给药。E-64c在体内显著抑制了这种耗竭(P小于0.05),使MAP2水平增加到对照水平的55+/-25.7%。E-64c/Loxistatin Acid对缺血诱导的髓鞘相关糖蛋白耗竭没有显著影响。使用假手术大鼠作为对照。我们的研究结果表明,钙蛋白酶部分参与MAP2的降解,钙蛋白酶抑制剂的使用可能是治疗脑缺血的一种有用的临床方法。[3] 在营养不良鸡的胸肌中,Loxistatin Acid (E-64C) 可使组织蛋白酶 B 和组织蛋白酶 H 的活性增加正常化。E-64C 抑制大鼠大脑中动脉闭塞后脑蛋白的缺血性降解。 |
酶活实验 |
β-分泌酶测定中在没有还原剂的情况下纯化BACE 1时缺乏半胱氨酸蛋白酶活性的检测[4]
令人感兴趣的是,从人脑组织中纯化BACE 1所使用的测定不包括还原条件(Sinha等人,1999)。该测定中没有还原剂,这解释了从脑组织中纯化如何产生BACE 1,而在还原条件下对分泌囊泡的研究检测到半胱氨酸蛋白酶作为β-分泌酶的活性(Hook等人,2002)。有趣的是,对BACE 1敲除小鼠的研究表明,神经元中的β-分泌酶活性降低。然而,这些研究在没有还原条件和存在大量半胱氨酸蛋白酶抑制剂Loxistatin Acid/E64c的情况下测量了β-分泌酶的活性(Roberds等人,2001)。因此,这些研究无法确定半胱氨酸蛋白酶。 |
动物实验 |
Dogs: Research is conducted on 83 mongrel dogs weighing an average of 11.2 kg. Through intravenous sodium thiamylal (7 mg/kg), they are rendered unconscious. Group A (n = 17) receives an intravenous bolus of E-64c (100 mg/kg) dissolved in saturated sodium bicarbonate just prior to the occlusion and following reperfusion, while Group B (n = 17) only receives the vehicle solution during these periods. The LAD is permanently ligated at the same level in the 49 dogs that remain (Groups C and D). An intravenous bolus of either vehicle only (Group D; n = 25) or loxstatin acid (100 mg/kg) is administered just prior to and one hour following the ligation. The estimated intramyocardial Loxistatin acid molecular concentration is 1,000 times that of total mCANP, and the dose of E-64c is intended for potential use in clinical practice.
|
毒性/毒理 (Toxicokinetics/TK) |
123664 rat LD50 intraperitoneal 2140 mg/kg BEHAVIORAL: SOMNOLENCE (GENERAL DEPRESSED ACTIVITY); BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: DYSPNEA Iyakuhin Kenkyu. Study of Medical Supplies., 17(736), 1986
123664 rat LD50 intravenous >1 gm/kg Iyakuhin Kenkyu. Study of Medical Supplies., 17(736), 1986 123664 mouse LD50 intraperitoneal 2400 mg/kg BEHAVIORAL: SOMNOLENCE (GENERAL DEPRESSED ACTIVITY); BEHAVIORAL: ATAXIA; LUNGS, THORAX, OR RESPIRATION: DYSPNEA Iyakuhin Kenkyu. Study of Medical Supplies., 17(736), 1986 123664 mouse LD50 intravenous >1 gm/kg Iyakuhin Kenkyu. Study of Medical Supplies., 17(736), 1986 |
参考文献 | |
其他信息 |
E-64c is a leucine derivative.
This article focuses on beta-amyloid (Abeta) peptide production and secretion in the regulated secretory pathway and how this process relates to accumulation of toxic Abeta in Alzheimer's disease. New findings are presented demonstrating that most of the Abeta is produced and secreted, in an activity-dependent manner, through the regulated secretory pathway in neurons. Only a minor portion of cellular Abeta is secreted via the basal, constitutive secretory pathway. Therefore, regulated secretory vesicles contain the primary beta-secretases that are responsible for producing the majority of secreted Abeta. Investigation of beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells demonstrated that cysteine proteases account for the majority of the beta-secretase activity. BACE 1 is present in regulated secretory vesicles but provides only a small percentage of the beta-secretase activity. Moreover, the cysteine protease activities prefer to cleave the wild-type beta-secretase site, which is relevant to the majority of AD cases. In contrast, BACE 1 prefers to cleave the Swedish mutant beta-secretase site that is expressed in a minor percentage of the AD population. These new findings lead to a unifying hypothesis in which cysteine proteases are the major beta-secretases for the production of Abeta in the major regulated secretory pathway and BACE 1 is the beta-secretase responsible for Abeta production in the minor constitutive secretory pathway. These results indicate that inhibition of multiple proteases may be needed to decrease Abeta production as a therapeutic strategy for Alzheimer's disease.[4] Evidence for cysteine protease(s) as β-secretase for production of Aβ in regulated secretory vesicles (a) and neuronal chromaffin cells (b). a: Inhibition of Aβ(1–40) production in chromaffin vesicles by the cysteine protease inhibitor E64c/Loxistatin Acid. Lysed chromaffin vesicles were incubated for different times at 37°C (at pH 5.5 with DTT) in the absence (open circles) or presence (solid circles) of the cysteine protease inhibitor E64c (10 μM). The content of Aβ(1–40) at different incubation times was measured by radioimmunoassay. b: Reduction of the β-secretase product derived from APP in chromaffin cells by a cysteine protease inhibitor. Formation of the 12–14-kDA 35S-COOH-terminal fragment of APP resulting from β-secretase was detected by immunoprecipitation with anti-Aβ(1–40) on SDS-PAGE gels and autoradiography. Phorbol myristate acetate (PMA) stimulated production of the 12–14-kDa COOH-terminal fragment (lane 2), compared with unstimulated controls (lane 1). However, the cell-permeable analogue of E64c/Loxistatin Acid, known as E64d, reduced the formation of the β-secretase COOH-terminal product of APP (lane 3).[4] |
分子式 |
C15H26N2O5
|
|
---|---|---|
分子量 |
314.38
|
|
精确质量 |
314.184
|
|
元素分析 |
C, 57.31; H, 8.34; N, 8.91; O, 25.45
|
|
CAS号 |
76684-89-4
|
|
相关CAS号 |
|
|
PubChem CID |
123664
|
|
外观&性状 |
White to off-white solid powder
|
|
密度 |
1.2±0.1 g/cm3
|
|
沸点 |
596.4±50.0 °C at 760 mmHg
|
|
闪点 |
314.5±30.1 °C
|
|
蒸汽压 |
0.0±3.6 mmHg at 25°C
|
|
折射率 |
1.504
|
|
LogP |
1.36
|
|
tPSA |
108.03
|
|
氢键供体(HBD)数目 |
3
|
|
氢键受体(HBA)数目 |
5
|
|
可旋转键数目(RBC) |
9
|
|
重原子数目 |
22
|
|
分子复杂度/Complexity |
422
|
|
定义原子立体中心数目 |
3
|
|
SMILES |
O=C([C@H]1O[C@@H]1C(N[C@H](C(NCCC(C)C)=O)CC(C)C)=O)O
|
|
InChi Key |
SCMSYZJDIQPSDI-SRVKXCTJSA-N
|
|
InChi Code |
InChI=1S/C15H26N2O5/c1-8(2)5-6-16-13(18)10(7-9(3)4)17-14(19)11-12(22-11)15(20)21/h8-12H,5-7H2,1-4H3,(H,16,18)(H,17,19)(H,20,21)/t10-,11-,12-/m0/s1
|
|
化学名 |
(2S,3S)-3-[[(2S)-4-methyl-1-(3-methylbutylamino)-1-oxopentan-2-yl]carbamoyl]oxirane-2-carboxylic acid
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.08 mg/mL (6.62 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (6.62 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (6.62 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: Saline: 2mg/mL 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.1809 mL | 15.9043 mL | 31.8086 mL | |
5 mM | 0.6362 mL | 3.1809 mL | 6.3617 mL | |
10 mM | 0.3181 mL | 1.5904 mL | 3.1809 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。