PD184352 (CI1040)

别名: PD 184352; CI-1040; PD184352 (CI-1040); 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide; CI1040; PD-184352; 2-(2-chloro-4-iodophenylamino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide; PD184352 (CI-1040); 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide; PD184352; CI 1040 2-(2-氯-4-碘苯氨基)-N-(环丙基甲氧基)-3,4-二氟苯甲酰胺; 2-[(2-氯-4-碘苯基)胺]-N-(环丙基甲氧基)-3,4-二氟苯甲胺; 2-[(2-氯-4-碘苯基)氨基]-N-(环丙基甲氧基)-3,4-二氟-苯甲酰胺;-4-碘苯氨基)-N-(环丙基甲氧基)-3,4-二氟苯甲酰胺;PD184352 ; 2-(2-氯-4-碘苯氨基)-N-(环丙基甲氧基)-3,4-二氟苯酰胺
目录号: V0448 纯度: ≥98%
PD184352 (PD-184352; CI-1040) 是苯甲羟肟酸的类似物,是一种口服生物活性、特异性、变构/非 ATP 竞争性 MEK1/2 抑制剂,具有潜在的抗癌活性。
PD184352 (CI1040) CAS号: 212631-79-3
产品类别: MEK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
PD184352 (PD-184352; CI-1040) 是苯甲羟肟酸的类似物,是一种口服生物活性、特异性、变构/非 ATP 竞争性 MEK1/2 抑制剂,具有潜在的抗癌活性。在基于细胞的检测中,它抑制 MEK1/2,IC50 值为 17 nM,并且对 MEK1/2 的偏好是 MEK5 的 100 倍。在小鼠异种移植模型中,它表现出强大的体外抗增殖活性和显着的体内抗肿瘤功效。
生物活性&实验参考方法
靶点
MEK1 (IC50 = 17 nM); MEK2 (IC50 = 17 nM)
体外研究 (In Vitro)
CI-1040 的 IC50 为 17 nM,直接抑制 MEK1。此外,一组 IC50 值高出 2.5 个数量级的相关激酶已被证明对其几乎没有活性。当用 CI-1040 处理整个细胞时,有丝分裂原诱导的 ERK 磷酸化被完全阻断。在 MDA-MB-231 乳腺癌细胞中,浓度为 1 μM 的 CI-1040 可分别抑制 99% 和 92% 的 ERK1 和 ERK2 磷酸化[1]。在 U-937 细胞中,CI-1040 以剂量和时间依赖性方式引起细胞凋亡并阻止增殖。 CI-1040 后 PUMA mRNA 和蛋白质水平显着升高[2]。
体内研究 (In Vivo)
MEK 抑制剂 CI-1040 的全身给药显着改善了肺结构,同时将腺瘤的形成减少了三分之一。 CL-1040 治疗的小鼠肺细胞增殖较少,对肺细胞分化没有明显影响[3]。
在体内,MEK抑制剂CI-1040的全身给药将腺瘤形成减少到第三个,并显著恢复了肺结构。CL-1040处理的小鼠肺细胞增殖率降低,对肺细胞分化没有明显影响。相比之下,Raf抑制剂BAY 43-9006不影响体内腺瘤的形成。 结论:MEK抑制剂CI-1040可用于治疗Ras和/或Raf依赖性人类恶性肿瘤。[3]
酶活实验
髓磷脂碱性蛋白 (MBP) 在被 MEK 激活后,会被激活的 MAP 激酶磷酸化。当谷胱甘肽 S-转移酶 (GST) 融合蛋白由 44-kDa MAPK (GST-MAPK) 或 45-kDa MEK (GST) 制成时-MEK1) 存在,测量 32P 掺入髓鞘碱性蛋白 (MBP) 的情况。测定在 50 mL 50 mM Tris、pH 7.4、10 mM MgCl2、2 mM EGTA 和 10 μM [γ-32P]ATP 中进行,其中含有 10 μg GST-MEK1、0.5 μg GST-MAPK 和 40 μg的MBP。 30°C 孵育 15 分钟后,添加 Laemmli SDS 样品缓冲液终止反应。 SDS/10% PAGE 可解析磷酸化的 MBP。该筛选过程的结果是鉴定出多种小分子 MEK 抑制剂,包括 CI-1040。 50% 抑制浓度 (IC50) 为 17 nM,检查添加顺序的实验表明 CI-1040 直接抑制 MEK1,而不影响 MAPK 的活性。
细胞实验
在细胞培养中,MEK 抑制剂 CI-1040 溶解在 DMSO 中制成 10 mM 储备液后,最终浓度为 50 mg/mL。用 5 和 20 uM CI-1040 预处理 24 小时后,用 wt-p53 siRNA 或 PUMA siRNA 转染 U-937 细胞 48 小时。然后每孔接受20mL MTT溶液,并且该过程再重复2小时。为了将代谢活细胞产生的MTT甲臜溶解在100mL异丙醇中,实验结束后吸出上清液。将板在旋转摇床上混合 30 分钟后,使用读板器测量 595 nm 处的吸光度[2]。
动物实验
Mice: By administering constitutively active C-Raf kinase to the lung, a lung cancer mouse model is produced. A daily intraperitoneal injection of BAY 43-9006 or CI-1040 is given starting at the age of 4 months for a total of 21 days at a dose of 100 mg/kg. At the conclusion of the treatment period, the lungs were separated and examined[3].
In this study, researchers have generated a lung cancer mouse model by targeting constitutively active C-Raf kinase to the lung. These mice develop adenomas within 4 months of life. At this time-point they received daily intraperitoneal injections of either 100 mg/kg BAY 43-9006 or CI-1040 for additional 21 days. Thereafter, lungs were isolated and the following parameters were analyzed using histology and immunohistochemistry: overall lung structure, frequency of adenoma foci, proliferation rate, ERK activity, caspase-3 activation, and lung differentiation.[3]
参考文献

[1]. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol. 2003 Oct;30(5 Suppl 16):105-16.

[2]. MEK inhibitor CI-1040 induces apoptosis in acute myeloid leukemia cells in vitro. Eur Rev Med Pharmacol Sci. 2016 May;20(10):1961-8.

[3]. Use of mitogenic cascade blockers for treatment of C-Raf induced lung adenoma in vivo: CI-1040strongly reduces growth and improves lung structure. BMC Cancer. 2004 Jun 1;4:24.

其他信息
2-(2-chloro-4-iodoanilino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide is an aminobenzoic acid.
CI-1040 has been used in trials studying the treatment of Lung Cancer, Breast Cancer, Breast Neoplasms, Pancreatic Cancer, and Colorectal Cancer, among others.
MEK Inhibitor CI-1040 is an agent that inhibits both mitogen-activated protein kinase kinases 1 and 2 (MEK1 and MEK2), substrates of Raf and phosphorylates extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), preventing phosphorylation and activation of the Mitogen-Activated Protein Kinase (MAPK) pathways, involved with signal transduction pathways and tumor proliferation.
Several key growth factors, cytokines, and proto-oncogenes transduce their growth- and differentiation-promoting signals through the mitogen-activated protein kinase or extracellular signal-regulated protein kinase (ERK) cascade. Overexpression or constitutive activation of this pathway has been shown to play an important role in the pathogenesis and progression of breast and other cancers, making the components of this signaling cascade potentially important as therapeutic targets. CI-1040 (PD184352) is an orally active, highly specific, small-molecule inhibitor of one of the key components of this pathway (MEK1/MEK2), and thereby effectively blocks the phosphorylation of ERK and continued signal transduction through this pathway. Antitumor activity has been seen in preclinical models with this compound, particularly for pancreas, colon, and breast cancers, which has been shown to correlate with its inhibition of pERK. Clinically, CI-1040 has been shown to be well tolerated in phase I studies, with safety and pharmacokinetic profiles that permit continuous daily dosing. Biomarker studies have shown target inhibition in patients, and antitumor activity has also been observed with a partial response in one patient with pancreatic cancer and stable disease in approximately 25% of phase I patients. Given the central role of the ERK/mitogen-activated protein kinase pathway in mediating growth-promoting signals for a diverse group of upstream stimuli, inhibitors of MEK, as a key central mediator, could have significant clinical benefit in the treatment of breast and other cancers.[1]
Objective: MEK1/2 (mitogen-activated protein kinase 1 and 2)/ERK1/2 (extracellular signal-regulated kinase 1 and 2) is important transducers of external signals for cell growth, survival, and apoptosis in acute myeloid leukemia cells (AML). In this study, we analyzed the effect of MEK inhibitor CI-1040 on the survival of AML cells. Materials and methods: Using ELISA and MTT we studied the cytotoxic effects of CI-1040 on AML U-937 cells. We studied the changes induced by CI-1040 on PUMA and p53 expression in U-937 cells by Western blotting assay. Moreover, we analyzed the cytotoxic effect of CI-1040 in U-937 cells with deleted PUMA, wt-p53 by wt-p53 siRNA and PUMA siRNA transfection. Results: CI-1040 induced apoptosis and inhibited proliferation in U-937 cells in a dose and time-dependent manner. CI-1040 induced a significant increase in PUMA mRNA and protein levels. Importantly, we show that knockdown of PUMA by PUMA siRNA transfection inhibited CI-1040-induced apoptosis and proliferation inhibition in U-937 cells. Moreover, CI-1040 induced apoptosis and proliferation inhibition was irrespective of wt-P53 status. Conclusions: These results demonstrate that CI-1040 induce apoptosis of U-937 cells and might be a new therapeutic option for the treatment of AML.[2]
Background: Signaling networks promoting cell growth and proliferation are frequently deregulated in cancer. Tumors often are highly dependent on such signaling pathways and may become hypersensitive to downregulation of key components within these signaling cascades. The classical mitogenic cascade transmits stimuli from growth factor receptors via Ras, Raf, MEK and ERK to the cell nucleus and provides attractive molecular targets for cancer treatment. For example, Ras and Raf kinase inhibitors are already in a number of ongoing phase II and phase III clinical trials. In this study the effect of the Raf kinase inhibitor BAY 43-9006 and of the MEK inhibitor CI-1040 (PD184352) on a Raf dependent lung tumor mouse model was analyzed in detail. Methods: We have generated a lung cancer mouse model by targeting constitutively active C-Raf kinase to the lung. These mice develop adenomas within 4 months of life. At this time-point they received daily intraperitoneal injections of either 100 mg/kg BAY 43-9006 or CI-1040 for additional 21 days. Thereafter, lungs were isolated and the following parameters were analyzed using histology and immunohistochemistry: overall lung structure, frequency of adenoma foci, proliferation rate, ERK activity, caspase-3 activation, and lung differentiation. Results: Both inhibitors were equally effective in vitro using a sensitive Raf/MEK/ERK ELISA. In vivo, the systemic administration of the MEK inhibitor CI-1040 reduced adenoma formation to a third and significantly restored lung structure. The proliferation rate of lung cells of mice treated with CL-1040 was decreased without any obvious effects on differentiation of pneumocytes. In contrast, the Raf inhibitor BAY 43-9006 did not influence adenoma formation in vivo. Conclusion: The MEK inhibitor CI-1040 may be used for the treatment of Ras and/or Raf-dependent human malignancies.[3]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C17H14CLF2IN2O2
分子量
478.67
精确质量
477.975
元素分析
C, 42.66; H, 2.95; Cl, 7.41; F, 7.94; I, 26.51; N, 5.85; O, 6.69
CAS号
212631-79-3
相关CAS号
212631-79-3
PubChem CID
6918454
外观&性状
White to off-white solid powder
密度
1.7±0.1 g/cm3
熔点
166-169ºC
折射率
1.656
LogP
8.01
tPSA
50.36
氢键供体(HBD)数目
2
氢键受体(HBA)数目
5
可旋转键数目(RBC)
6
重原子数目
25
分子复杂度/Complexity
472
定义原子立体中心数目
0
SMILES
IC1C([H])=C([H])C(=C(C=1[H])Cl)N([H])C1C(=C(C([H])=C([H])C=1C(N([H])OC([H])([H])C1([H])C([H])([H])C1([H])[H])=O)F)F
InChi Key
GFMMXOIFOQCCGU-UHFFFAOYSA-N
InChi Code
InChI=1S/C17H14ClF2IN2O2/c18-12-7-10(21)3-6-14(12)22-16-11(4-5-13(19)15(16)20)17(24)23-25-8-9-1-2-9/h3-7,9,22H,1-2,8H2,(H,23,24)
化学名
2-(2-chloro-4-iodoanilino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide
别名
PD 184352; CI-1040; PD184352 (CI-1040); 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide; CI1040; PD-184352; 2-(2-chloro-4-iodophenylamino)-N-(cyclopropylmethoxy)-3,4-difluorobenzamide; PD184352 (CI-1040); 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide; PD184352; CI 1040
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~96 mg/mL (~200.6 mM)
Water: <1 mg/mL
Ethanol: ~14 mg/mL (~29.2 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.22 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (4.35 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。

View More

配方 3 中的溶解度: 30% PEG400+0.5% Tween80+5% propylene glycol, pH 9: 10mg/mL


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.0891 mL 10.4456 mL 20.8912 mL
5 mM 0.4178 mL 2.0891 mL 4.1782 mL
10 mM 0.2089 mL 1.0446 mL 2.0891 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
CI-1040 in Treating Patients With Advanced Breast, Colon, Pancreatic, or Non-Small Cell Lung Cancer
CTID: NCT00033384
Phase: Phase 2
Status: Completed
Date: 2013-04-12
A Multicenter Phase 2 Study of CI-1040 in Patients With Advanced Nonsmall-Cell Lung, Breast, Colon and Pancreatic Cancer
CTID: NCT00034827
Phase: Phase 2
Status: Completed
Date: 2007-05-04
相关产品
联系我们