Rilzabrutinib (PRN1008)

别名: PRN-1008; PRN1008; Rilzabrutinib, (E)-; 5G1WE425BI; (E)-2-[(3R)-3-[4-amino-3-(2-fluoro-4-phenoxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidine-1-carbonyl]-4-methyl-4-[4-(oxetan-3-yl)piperazin-1-yl]pent-2-enenitrile; PRN 1008
目录号: V2085 纯度: ≥98%
Rilzabrutinib (PRN-1008) 是一种新型、高效、可逆的 BTK(布鲁顿酪氨酸激酶)共价抑制剂,正在研究用于治疗类风湿关节炎。
Rilzabrutinib (PRN1008) CAS号: 1575596-29-0
产品类别: BTK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Rilzabrutinib (PRN-1008) 是一种新型、高效、可逆的 BTK(布鲁顿酪氨酸激酶)共价抑制剂,正在研究用于治疗类风湿关节炎。它抑制 BTK,IC50 为 1.3 nM。 BTK 是 Tec 家族酪氨酸激酶,作为重要的细胞内信号元件,在免疫途径中至关重要,参与适应性和免疫反应。在针对 251 种其他激酶进行测试时,发现 PRN1008 对 BTK 非常有效,并且具有高度选择性。 PRN1008 靶向 BTK 的半胱氨酸导致解离速率缓慢,在体外洗去化合物 18 小时后,PBMC 中与 BTK 的结合保留了 79 ± 2%。 PRN1008 口服给药后安全且耐受性良好,并且在外周血单核细胞中实现了高且持续的 BTK 占用水平。 PRN1008 目前正处于 I 期开发阶段,作为类风湿关节炎的治疗剂。
生物活性&实验参考方法
靶点
BTK (IC50 = 1.3 nM); BMX (IC50 = 1.0 nM); ITK (IC50 = 440 nM); TEC (IC50 = 0.8 nM); RLK (IC50 = 1.2 nM); BLK (IC50 = 6.3 nM); EGFR (IC50 = 520 nM); ERBB2 (IC50 = 3900 nM); ERBB4 (IC50 = 11.3 nM)
体外研究 (In Vitro)
rilzabrutinib 是布鲁顿酪氨酸激酶 (BTK) 的可逆共价抑制剂,IC50 为 1.3±0.5 nM。此外,当针对 251 种其他激酶进行评估时,发现 rilzabrutinib 具有极高的选择性。 Rilzabrutinib以BTK的半胱氨酸为靶点,导致解离速率延迟;化学物质在体外被洗掉 18 小时后,79±2% 的结合 BTK 仍然存在于 PBMC 中。共价半胱氨酸结合的完全可逆性发生在靶标变性时。 Rilzabrutinib 抑制抗 IgM 和 B 细胞 CD69 表达产生的人 B 细胞增殖(10% 血清),IC50 值分别为 5±2.4 nM 和 123±38 nM [2]。
体内研究 (In Vivo)
药物从血流中去除后,利扎布替尼继续具有与延长的目标停留时间一致的药效作用。此外,rilzabrutinib 以剂量依赖的方式逆转并完全抑制大鼠胶原诱导的关节炎,这将靶点占用与疾病的缓解相关联 [2]。
动物实验
In this study, researchers assessed the effects of selective Btk inhibitors PRN1008 (rilzabrutinib) and PRN473 on platelet signalling and function mediated by CLEC-2 and GPVI. They used healthy donor and XLA platelets to determine off-target inhibitor effects. Inferior vena cava (IVC) stenosis and Salmonella infection mouse models were used to assess antithrombotic effects of PRN473 in vivo. PRN1008 and PRN473 potently inhibited CLEC-2-mediated platelet activation to rhodocytin. No off-target inhibition of SFKs was seen. PRN1008 treatment of Btk-deficient platelets resulted in minor additional inhibition of aggregation and tyrosine phosphorylation, likely reflecting inhibition of Tec. No effect on GPCR-mediated platelet function was observed. PRN473 significantly reduced the number of thrombi in podoplanin positive vessels following Salmonella infection and the presence of IVC thrombosis following vein stenosis. The potent inhibition of human platelet CLEC-2, and reduced thrombosis in in vivo models, together with the lack of off-target SFK inhibition and absence of bleeding reported in rilzabrutinib treated immune thrombocytopenia patients, suggest Btk inhibition as a promising antithrombotic strategy.[Selective Btk inhibition by PRN1008/PRN473 blocks human CLEC-2 & PRN473 reduces venous thrombosis formation in mice. Blood Adv. 2024 Jul 5:bloodadvances.2024012713]
10, 20, 40 mg/kg
Rats with collagen-induced arthritis (CIA) model
药代性质 (ADME/PK)
Cmax was highly correlated with the magnitude of BTK occupancy 4 h post‐PRN1008 dosing (Figure 4). A sigmoidal Emax model, with a fitted γ and E0 provided the best fit of PRN1008 Cmax vs. occupancy data. The parameter estimates (% coefficient of variation) were: Emax 76.7 (13) %; EC50 46.5 (15) ng ml–1; E0 17.8 (42) %, and γ 2.1 (31). These results suggest a fairly steep exposure–response relationship, with low variability, and with 80% of maximal occupancy achieved at Cmax concentrations of approximately 100 ng ml–1 and above. The E0 value of 17.8% is consistent with the lower quantifiable range of the assay.
The robust relationship between PRN1008 Cmax and 4‐h occupancy, along with the very consistent occupancy decay rate of ~1.6% h–1 should allow for design of dosing regimens (dose and dose intervals) which precisely target various levels of occupancy over the course of a dose interval. It is noted that the nature of the PK and PK/PD relationships of PRN1008 may differ between healthy volunteers and patient populations, and should be further evaluated in future studies in patients.[1]
This single-center, open-label, non-randomized, two-part, phase I study was conducted (1) to evaluate the absolute oral bioavailability of rilzabrutinib 400 mg tablet following an i.v. microtracer dose of ~100 μg [14C]-rilzabrutinib (~1 μCi) and single oral dose of 400 mg rilzabrutinib tablet (part 1), and (2) to characterize the absorption, metabolism, and excretion (AME) of 14C-radiolabeled rilzabrutinib following single oral dose (300 mg) of [14C]-rilzabrutinib (~1000 μCi; administered as a liquid) in healthy male participants (part 2). A total of 18 subjects were enrolled (n = 8 in part 1; n = 10 in part 2). The absolute bioavailability of 400 mg rilzabrutinib oral tablet was low (<5%). In part 1, rilzabrutinib was absorbed rapidly after single oral dose of rilzabrutinib 400 mg tablet with a median (range) time to maximum concentration (Tmax ) value of 2.03 h (1.83-2.50 h). The geometric mean (coefficient of variation) terminal half-life following the oral dose and i.v. microtracer dose of ~100 μg [14C]-rilzabrutinib, were 3.20 (51.0%) and 1.78 (37.6%) h, respectively. In part 2, rilzabrutinib was also absorbed rapidly following single oral dose of 300 mg [14C]-rilzabrutinib solution with a median (range) Tmax value of 1.00 h (1.00-2.00 h). The majority of total radioactivity was in the feces for both non-bile collection subjects (92.9%) and bile collection subjects (87.6%), and ~5% of radioactivity was recovered in urine after oral administration. Urinary excretion of unchanged rilzabrutinib was low (3.02%). The results of this study advance the understanding of the absolute bioavailability and AME of rilzabrutinib and can help inform its further investigation.Clin Transl Sci. 2023 Jul;16(7):1210-1219.
毒性/毒理 (Toxicokinetics/TK)
Data from all 80 enrolled subjects who received study drug (either PRN1008 or placebo) were included in the safety population. All participants were assessed for AEs for the duration of the study. No serious AEs or deaths were reported during the study, and no participants discontinued treatment due to an AE in either Part A or Part B. At PRN1008 single doses of 50 to 600 mg, safety and tolerability was similar to placebo. In these four cohorts, there was only one subject of the six treated in each cohort who experienced a treatment‐emergent AE (TEAE). Of these four TEAEs, only one was considered related to study drug (nausea in Cohort A4), and one was graded as moderate (toothache in Cohort A2, unrelated to study drug). This compares with two TEAEs reported in two of the 10 subjects who received placebo (both graded as mild, not drug related). In Cohort A5 (1200 mg), the primary AEs observed were gastrointestinal (GI) in nature, and were reported by each of the six subjects receiving PRN1008. The drug‐related AEs included diarrhoea (coded as loose stools; n = 6, 3 mild and 3 moderate severity), nausea (n = 3, 2 mild and 1 moderate severity), vomiting (n = 1), throat irritation (n = 3), and oropharyngeal discomfort (n = 1). There was no apparent relationship between GI AEs and PRN1008 pharmacokinetics. As described above, both Cmax and area under the concentration–time curve for PRN1008 were similar at the 600 mg and 1200 mg doses. Despite similar plasma PK, the increase in GI AEs for the 600 mg vs. 1200 mg dose levels would suggest a localized effect related to total administered dose, and not to plasma exposure. Following 10 or 11 days of dosing, PRN1008 was generally safe and well tolerated. TEAEs were reported in 7/8, 4/8, 8/8, 7/8 and 4/8 subjects in the 300 mg QD, 300 mg twice daily (BID), 600 mg QD, 450 mg BID and placebo groups, respectively. TEAEs classified as treatment‐related appeared to be more frequent in PRN1008 receiving subjects, reported in 6/8, 3/8, 8/8, 6/8 and 1/8 subjects in the 300 mg QD, 300 mg BID, 600 mg QD, 450 mg BID and placebo groups, respectively. All TEAEs classified as related to study drug were mild in intensity, with the exception of one subject in the 450 mg BID cohort who reported moderate diarrhoea. There were no clinically significant or dose‐dependent changes observed in haematology, biochemistry or coagulation laboratory parameters in either Part A or Part B of the study. Similarly, no clinically significant changes were observed in vital signs, ECGs or urinalysis evaluations.[1]
参考文献

[1]. A phase I trial of PRN1008, a novel reversible covalent inhibitor of Bruton's tyrosine kinase, in healthy volunteers. Br J Clin Pharmacol. 2017 Nov;83(11):2367-2376.

[2]. Hill RJ, Bradshaw JM, Bisconte A, Tam D, Owens TD, Brameld KA, Smith PF, Funk JO, Goldstein DM, Nunn PA. Preclinical Characterization of PRN1008, a Novel Reversible Covalent Inhibitor of BTK that Shows Efficacy in a RAT Model of Collagen-Induced Arthritis. Annals of the Rheumatic Diseases 2015; 74(Suppl 2): 216.

其他信息
Rilzabrutinib is an oral, reversible covalent inhibitor of Bruton's tyrosine kinase being investigated for the treatment of immune disorders, such as immune thrombocytopenic purpura.
Rilzabrutinib is an orally bioavailable reversible covalent inhibitor of Bruton's tyrosine kinase (BTK), with potential immunomodulatory and anti-inflammatory activities. Upon oral administration, rilzabrutinib inhibits the activity of BTK. This prevents the activation of the B-cell antigen receptor (BCR) signaling pathway, and the resulting immune activation and inflammation. BTK, a cytoplasmic tyrosine kinase and member of the Tec family of kinases, plays an important role in B-lymphocyte development, activation, signaling, proliferation and survival. In addition to B-cells, BTK is also expressed in other cells of hematopoietic origin, including monocytes, macrophages, neutrophils, mast cells, eosinophils and platelets, and plays an important role in both adaptive and innate immune responses.
Drug Indication
Treatment of immune thrombocytopenia
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C36H40FN9O3
分子量
665.7597
精确质量
665.32
元素分析
C, 64.95; H, 6.06; F, 2.85; N, 18.93; O, 7.21
CAS号
1575596-29-0
相关CAS号
1575596-77-8;1575596-29-0;1575591-66-0
PubChem CID
73388818
外观&性状
White to off-white solid powder
LogP
3.4
tPSA
139
氢键供体(HBD)数目
1
氢键受体(HBA)数目
11
可旋转键数目(RBC)
8
重原子数目
49
分子复杂度/Complexity
1230
定义原子立体中心数目
1
SMILES
CC(C)(/C=C(\C#N)/C(=O)N1CCC[C@H](C1)N2C3=NC=NC(=C3C(=N2)C4=C(C=C(C=C4)OC5=CC=CC=C5)F)N)N6CCN(CC6)C7COC7
InChi Key
LCFFREMLXLZNHE-GBOLQPHISA-N
InChi Code
InChI=1S/C36H40FN9O3/c1-36(2,45-15-13-43(14-16-45)26-21-48-22-26)18-24(19-38)35(47)44-12-6-7-25(20-44)46-34-31(33(39)40-23-41-34)32(42-46)29-11-10-28(17-30(29)37)49-27-8-4-3-5-9-27/h3-5,8-11,17-18,23,25-26H,6-7,12-16,20-22H2,1-2H3,(H2,39,40,41)/b24-18+/t25-/m1/s1
化学名
(S,E)-2-(3-(4-amino-3-(2-fluoro-4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidine-1-carbonyl)-4-methyl-4-(4-(oxetan-3-yl)piperazin-1-yl)pent-2-enenitrile
别名
PRN-1008; PRN1008; Rilzabrutinib, (E)-; 5G1WE425BI; (E)-2-[(3R)-3-[4-amino-3-(2-fluoro-4-phenoxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidine-1-carbonyl]-4-methyl-4-[4-(oxetan-3-yl)piperazin-1-yl]pent-2-enenitrile; PRN 1008
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO:10 mM
Water:N/A
Ethanol:N/A
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (3.12 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (3.12 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (3.12 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.5020 mL 7.5102 mL 15.0204 mL
5 mM 0.3004 mL 1.5020 mL 3.0041 mL
10 mM 0.1502 mL 0.7510 mL 1.5020 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Study to Evaluate Rilzabrutinib in Adults and Adolescents With Persistent or Chronic Immune Thrombocytopenia (ITP)
CTID: jRCT2051220003
Status: Recruiting
Date: 2022-04-08
Rilzabrutinib for the treatment of chronic spontaneous urticaria in patients who remain symptomatic despite the use of H1 antihistamine
CTID: jRCT2031210489
Status: Not Recruiting
Date: 2021-12-17
NCT05018806
Atopic Dermatitis
September 9, 2021
Phase 2
NCT04562766
Principia Biopharma
Immune Thrombocytopenia
December 14, 2020
Phase 3
生物数据图片
  • PRN1008

    Individual BTK occupancy by PRN1008 dose level (Part A). Solid line represents fit of a linear regression model to estimate loss of occupancy over time.2017 Nov;83(11):2367-2376.

  • PRN1008

    Duration of BTK occupancy (squares) in relation to the plasma concentration profile of PRN1008 (circles), following final dose on day 10 of a 600mg once daily dosing regimen in the multiple ascending dose study.2017 Nov;83(11):2367-2376.

  • PRN1008


    Exposure–response relationship between 4‐hour BTK occupancy and PRN1008 maximum observed concentration (Part A).2017 Nov;83(11):2367-2376.

相关产品
联系我们