规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
靶点 |
ALK5 12 nM (IC50) ALK4 45 nM (IC50) ALK7 7.5 nM (IC50)
|
---|---|
体外研究 (In Vitro) |
A83-01odium 是 I 型淋巴结受体 ALK7、I 型激活素/淋巴结受体 ALK4 和 TGF-β I 型受体 ALK5 激酶的强抑制剂。它可以减少 ALK-5 诱导的转录量。细胞中 ALK4-TD 和 ALK7-TD 诱导的转录也被 Mv1Lu 12 nM 的 IC50 阻断。 R4-2 细胞中组成型活性 ALK-6、ALK-2、ALK-3 和 ALK-1 诱导表达受到微弱抑制,IC50 分别为 45 nM 和 7.5 nM。有效阻断 TGF-β 的生长抑制作用,A 83-01 钠 (0.03-10 μM) 在 3 μM 时完全抑制这种作用。在 HaCaT 细胞中,83-01 钠 (1–10 μM) 抑制 TGF-β 诱导的 Smad 激活 [1]。虽然 TGF-β1 会增加 HM-1 细胞的细胞运动、粘附和侵袭,但 83-01 钠 (1 μM) 不会改变细胞增殖 [2]。
|
体内研究 (In Vivo) |
当腹腔注射 83-01(50、150 和 500 μg/小鼠)时,没有体重或神经行为症状的小鼠可以具有相当高的存活率 [2]。在携带 M109 细胞的小鼠中,83-01 钠(0.5 mg/kg,腹腔注射)钠显示出强大的抗肿瘤活性 [3]。
|
酶活实验 |
先前描述了哺乳动物表达载体中ALK-1至-7的组成型活性形式的原始构建。9xCAGA萤光素酶质粒包含驱动萤光素酶表达的CAGA-Smad结合元件的九个重复序列。(BRE)2-荧光素酶质粒包含Id1启动子的BMP响应元件的两个重复序列,所述启动子克隆在驱动荧光素素酶表达的最小启动子的上游。3GC2萤光素酶质粒包含来源于Smad6启动子的近端BMP响应元件的富含GC的序列的三个重复序列。[1]
|
细胞实验 |
Mv1Lu细胞以2.5×104个细胞/孔的密度接种在24孔板中,一式两份。第二天,用1µM小分子抑制剂预处理细胞1小时,然后用TGF-β1 ng/mL)培养24小时、48小时或72小时。用胰蛋白酶消化细胞并用Coulter计数器计数。为了探索小分子抑制剂是否以浓度依赖的方式降低TGF-β的生长抑制作用,如上所述接种Mv1Lu细胞,并用不同浓度的小分子抑制剂预处理1小时。预处理后,用TGF-β1 ng/mL)培养细胞48小时并计数。[1]
|
动物实验 |
Female B6C3F1 mice used for the in vivo studies are maintained under specific pathogen-free conditions. To evaluate the effect of A 83-01 on the survival of mice bearing peritoneal dissemination, HM-1 cells (1×106) are injected into the abdominal cavity via the left flank of the mouse. Starting the next day, A 83-01 (150 μg/body) or vehicles (PBS with 0.5% DMSO) are injected into the abdominal cavity three times per week. Mice are euthanized before reaching the moribund state.
|
参考文献 |
|
其他信息 |
Transforming growth factor (TGF)-beta signaling facilitates tumor growth and metastasis in advanced cancer. Use of inhibitors of TGF-beta signaling may thus be a novel strategy for the treatment of patients with such cancer. In this study, we synthesized and characterized a small molecule inhibitor, A-83-01, which is structurally similar to previously reported ALK-5 inhibitors developed by Sawyer et al. (2003) and blocks signaling of type I serine/threonine kinase receptors for cytokines of the TGF-beta superfamily (known as activin receptor-like kinases; ALKs). Using a TGF-beta-responsive reporter construct in mammalian cells, we found that A-83-01 inhibited the transcriptional activity induced by TGF-beta type I receptor ALK-5 and that by activin type IB receptor ALK-4 and nodal type I receptor ALK-7, the kinase domains of which are structurally highly related to those of ALK-5. A-83-01 was found to be more potent in the inhibition of ALK5 than a previously described ALK-5 inhibitor, SB-431542, and also to prevent phosphorylation of Smad2/3 and the growth inhibition induced by TGF-beta. In contrast, A-83-01 had little or no effect on bone morphogenetic protein type I receptors, p38 mitogen-activated protein kinase, or extracellular regulated kinase. Consistent with these findings, A-83-01 inhibited the epithelial-to-mesenchymal transition induced by TGF-beta, suggesting that A-83-01 and related molecules may be useful for preventing the progression of advanced cancers.[1]
Peritoneal dissemination including omental metastasis is the most frequent route of metastasis and an important prognostic factor in advanced ovarian cancer. We analyzed the publicly available microarray dataset (GSE2109) using binary regression and found that the transforming growth factor (TGF)-beta signaling pathway was activated in omental metastases as compared to primary sites of disease. Immunohistochemical analysis of TGF-beta receptor type 2 and phosphorylated SMAD2 indicated that both were upregulated in omental metastases as compared to primary disease sites. Treatment of the mouse ovarian cancer cell line HM-1 with recombinant TGF-β1 promoted invasiveness, cell motility and cell attachment while these were suppressed by treatment with A-83-01, an inhibitor of the TGF-β signaling pathway. Microarray analysis of HM-1 cells treated with TGF-β1 and/or A-83-01 revealed that A-83-01 efficiently inhibited transcriptional changes that are induced by TGF-β1. Using gene set enrichment analysis, we found that genes upregulated by TGF-β1 in HM-1 cells were also significantly upregulated in omental metastases compared to primary sites in the human ovarian cancer dataset, GSE2109 (false discovery rate (FDR) q = 0.086). Therapeutic effects of A-83-01 in a mouse model of peritoneal dissemination were examined. Intraperitoneal injection of A-83-01 (150 μg given three times weekly) significantly improved survival (p = 0.015). In summary, these results show that the activated TGF-β signaling pathway in peritoneal metastases is a potential therapeutic target in ovarian cancer. [2] Tumor cell targeting of drug carriers is a promising strategy and uses the attachment of various ligands to enhance the therapeutic potential of chemotherapy agents. Folic acid is a high-affinity ligand for folate receptor, which is a functional tumor-specific receptor. The transforming growth factor (TGF)-β type I receptor (TβR-I) inhibitor A-83-01 was expected to enhance the accumulation of nanocarriers in tumors by changing the microvascular environment. To enhance the therapeutic effect of folate-linked liposomal doxorubicin (F-SL), we co-administrated F-SL with A-83-01. Intraperitoneally injected A-83-01-induced alterations in the cancer-associated neovasculature were examined by magnetic resonance imaging (MRI) and histological analysis. The targeting efficacy of single intravenous injections of F-SL combined with A-83-01 was evaluated by measurement of the biodistribution and the antitumor effect in mice bearing murine lung carcinoma M109. A-83-01 temporarily changed the tumor vasculature around 3 h post injection. A-83-01 induced 1.7-fold higher drug accumulation of F-SL in the tumor than liposome alone at 24 h post injection. Moreover F-SL co-administrated with A-83-01 showed significantly greater antitumor activity than F-SL alone. This study shows that co-administration of TβR-I inhibitor will open a new strategy for the use of FR-targeting nanocarriers for cancer treatment.[3] |
分子式 |
C25H19N5NAS
|
---|---|
精确质量 |
443.118
|
CAS号 |
2828431-89-4
|
相关CAS号 |
A 83-01;909910-43-6;A 83-01;909910-43-6
|
PubChem CID |
139034128
|
外观&性状 |
Typically exists as White to light yellow solids at room temperature
|
tPSA |
76.7Ų
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
5
|
可旋转键数目(RBC) |
3
|
重原子数目 |
32
|
分子复杂度/Complexity |
615
|
定义原子立体中心数目 |
0
|
InChi Key |
QEDFBXIADXHNKE-UHFFFAOYSA-M
|
InChi Code |
InChI=1S/C25H19N5S.Na/c1-17-8-7-13-23(27-17)24-21(19-14-15-26-22-12-6-5-11-20(19)22)16-30(29-24)25(31)28-18-9-3-2-4-10-18;/h2-16H,1H3,(H,28,31);/q;+1/p-1
|
化学名 |
sodium;[3-(6-methylpyridin-2-yl)-4-quinolin-4-ylpyrazole-1-carbothioyl]-phenylazanide
|
别名 |
A 83-01 sodium salt; 2828431-89-4; 3-(6-Methylpyridin-2-yl)-N-phenyl-4-(quinolin-4-yl)-1H-pyrazole-1-carbothioamide, sodium salt; A 83-01 sodium; G16241; sodium N-[3-(6-methylpyridin-2-yl)-4-(quinolin-4-yl)pyrazole-1-carbothioyl]anilinide; sodium;[3-(6-methylpyridin-2-yl)-4-quinolin-4-ylpyrazole-1-carbothioyl]-phenylazanide
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: (1). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮和光照。 (2). 该产品在溶液状态不稳定,请现配现用。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 100 mg/mL (224.97 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 5 mg/mL (11.25 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浮液; 超声和加热处理
例如,若需制备1 mL的工作液,可将100 μL 50.0mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.62 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.62 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 配方 4 中的溶解度: 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。