规格 | 价格 | 库存 | 数量 |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
靶点 |
Androgen receptor; metabolite of testosterone; oxidized testosterone
|
---|---|
体外研究 (In Vitro) |
在一些硬骨鱼中,11-酮睾酮 (11-KT) 是最强大的雄激素,并且不可芳香化。与 11-酮睾酮(10 和 100 μM)体外培养五天后,肝外植体和卵巢外植体的培养基中睾酮和 17β-雌二醇浓度增加;肝外植体培养基中卵黄蛋白原的浓度也增加[1]。
HSD11B2由SF-1诱导并参与11-KT生成[1] 人卵巢颗粒细胞瘤来源的KGN细胞在基础条件下类固醇生成能力较弱。但通过感染表达SF-1及其辅激活因子的腺病毒,可使其转化为能产生多种类固醇激素的细胞。为研究这一转化过程中的基因表达变化,我们采用DNA微阵列技术对比了转入GFP或SF-1的KGN细胞。SF-1的引入诱导了包括CYP11A1、HSD3B2、CYP17A1和CYP19A1等已知SF-1靶基因在内的多个类固醇合成酶基因表达(附表2)。除这些基因外,HSD11B2作为强效SF-1诱导候选基因(附表2),在GFP转导细胞中几乎检测不到(图1A、B)。Q-PCR和免疫印迹分析证实,SF-1的引入显著诱导了HSD11B2 mRNA和蛋白表达(图1A、B),与微阵列数据一致。既往研究表明,在小鼠性腺中HSD11B2与CYP11B1共同参与睾酮向11-KT的转化(附图1),体外实验也证实其能催化肾上腺雄激素转化。微阵列分析提示CYP11B1与其他参与睾酮和E2合成的类固醇生成基因一样,也是SF-1诱导基因(图1C、附表2及附图1)。实际上,SF-1不仅能诱导睾酮和E2的产生,还能促进CYP11B1表达及11-KT生成(图1C、D)。 为验证HSD11B2在人源类固醇生成细胞中催化11-KT合成的作用,我们在人肾上腺皮质H295R细胞中异位表达该基因。H295R细胞虽表达CYP11B1和其他睾酮合成相关酶(附图2),但内源性HSD11B2几乎不可检测(图2A)。尽管该细胞能较高水平产生睾酮,但其向11-KT的转化率极低(图2C、D)。瞬时转染HSD11B2表达载体(图2B)后,实验组11-KT产量较对照组显著增加(图2D),而两组睾酮浓度无差异(图2C)。这些结果表明人源HSD11B2的表达可能是类固醇生成细胞中11-KT合成的重要调控因子。 11-KT体外处理效应[2] 卵巢组织学观察[2] 通过组织学观察证实体外培养样本均发育至II期(图6)。 肝外植体中era、erb、ar、lpl、cyp19a1、Vtg基因表达谱[2] 参考引物筛选显示β-actin最适合作为内参(BestKeeper中SD=0.22;Delta CT中SD=0.57;Normfinder中SD=0.052;P<0.05,表1)。cyp19a1在100μM组的表达量是对照组的6.4倍(P=0.001),是10μM组的3倍(P=0.002)(图7A)。era在100μM组的表达量较对照组升高2.2倍(P=0.033),较10μM组高1.3倍(P=0.108)(图7B)。erb表达随11-KT浓度增加略有上升,但组间无统计学差异(P=0.838,图7C)。实验组ar和lpl表达均显著高于对照组(P=0.017;P≤0.001),但两实验组间无差异(P=0.784;P=0.999)(图7D、E)。ar表达在10μM和100μM组分别是对照组的1.93倍(P=0.017)和2.18倍(P=0.019)(图7D)。lpl表达在10μM和100μM组分别较对照组高1.3倍(P=0.001)和1.5倍(P≤0.001)(图7E)。值得注意的是,11-KT对vtg表达具有显著促进作用:100μM组表达量是10μM组的30倍(P=0.002),是对照组的80倍(P=0.01)(图7F)。 肝外植体培养液中T、E2和Vtg浓度变化[2] 添加100μM 11-KT的肝外植体培养5天后,培养液中T和E2浓度显著增加。100μM组T浓度(151.30±73.50 ng/mL)高于10μM组(14.14±10.90 ng/mL,P=0.058)和对照组(0.01±0.00 ng/mL,P=0.026)(图8A)。100μM组E2浓度(96.88±42.63 pg/mL)是10μM组(16.61±6.40 pg/mL)的6倍(P=0.002),是对照组(1.59±0.69 pg/mL)的60倍(P=0.001)(图8B)。Vtg浓度随11-KT浓度升高呈上升趋势(P=0.035),100μM组(0.18±0.00 ng/mL)分别是10μM组(0.10±0.02 ng/mL)和对照组(0.03±0.01 ng/mL)的1.8倍(P=0.026)和6倍(图8C)。 卵巢外植体中foxl2、cyp19a1、era、erb、ar、Vtgr基因表达谱[2] 经含11-KT培养基培养5天后,仅era在实验组的表达较对照组发生显著变化(P=0.005,图9C)。foxl2、cyp19a1和erb表达虽呈浓度依赖性上升趋势,但组间无统计学差异(P=0.095,图9A;P=0.214,图9B;P=0.838,图9D)。 卵巢外植体培养液中T和E2浓度变化[2] 添加11-KT后,卵巢组织培养液中T和E2浓度均升高。实验组T浓度显著高于对照组(0.02±0.01 ng/mL,P=0.001),但10μM组(140.75±28.87 ng/mL)与100μM组(40.27±40.54 ng/mL)无显著差异(P=0.058,图10A)。100μM组E2浓度(66.36±22.79 pg/mL)分别是10μM组(13.77±5.63 pg/mL)和对照组(2.17±1.63 pg/mL)的4.8倍(P=0.024)和33倍(P=0.002)(图10B)。 |
体内研究 (In Vivo) |
将含有 11-酮睾酮(5 或 25 mg/kg)的硅橡胶条植入卵黄发生前培养的小鲟(Acipenser ruthenus)体内,历时 30 天。没有证据表明性逆转或卵巢男性化。 11-酮睾酮促进扩散依赖性小体卵巢发育[1]。
11-酮睾酮(111-KT)是一种非芳香化的雄激素,是几种硬骨鱼中最有效的雄激素。有报道称,少数雌鱼在卵黄沉积期前血清中11-KT浓度较高且急剧升高。本研究旨在分析11-KT在体外和体内对黄颡鱼卵巢发育、相关基因表达水平、卵黄蛋白原蛋白(Vtg)合成和血清性类固醇浓度的影响。11-KT(5或25 mg/kg)硅橡胶条体内植入30天。未观察到卵巢男性化或性别逆转。组织学分析显示,11-KT以剂量依赖的方式促进小体卵巢发育。Vtg和睾酮(T)显著升高,17β-雌二醇(E2)显著降低,各组间差异无统计学意义。肝脏雄激素受体(ar)、vtg和脂蛋白脂肪酶(lpl)基因表达显著升高。而11-KT对卵巢中foxl2和cyp19a1的表达没有影响。体外11-KT (10 μM和100 μM)培养5 d后,肝脏和卵巢外植体培养基中T和E2浓度均升高;肝脏外植体培养基中Vtg的浓度也增加。肝组织中ar、era、vtg和lpl的表达显著升高。而在体外培养的卵巢外植体中,只有era的表达显著增加。总之,这些结果表明,11-KT诱导卵巢发育,以及Vtg和脂质合成,并且可能是促进卵黄前小体肝脏中Vtg合成启动的重要因素。[2] 11-KT在生殖腺中产生,是人类的主要雄激素之一[1] 为了阐明11-KT的合成途径,我们研究了人类性腺中CYP11B1和HSD11B2的表达(图3,A和B)。Q-PCR和Western blot分析显示,这两个基因在睾丸和卵巢中的mRNA和蛋白水平均可检测到(图3,A和B)。免疫组织化学分析显示,这两种蛋白都定位于睾丸间质细胞和卵巢卵膜细胞,尽管HSD11B2在卵巢颗粒细胞的一些群体中也可检测到(图3C)。这些结果强烈提示11-KT在睾丸间质细胞和卵巢卵泡细胞中产生。为了证实这一假设,我们研究了人类间质细胞中11-KT的产生。为了支持免疫组织化学分析,间质细胞表达CYP11B1和HSD11B2基因(补充图3A)。在基础条件下,它们可以产生孕酮、睾酮和11-KT(图3D和补充图3B)。cAMP治疗适度增加了这些类固醇激素的产生。 然后,我们测量了男女血浆中11-KT、睾酮和E2的浓度(图3,E-G)。男性的睾酮水平大约是女性的22倍,而11-KT水平在两性之间是相似的(图3,E和F)。值得注意的是,在女性中,11-KT浓度与睾酮浓度相似,比E2浓度高约5倍(图3H)。在KGN细胞中,浓度超过10−9M时,人ar介导的转激活显著增加了11-KT(图4)。这一水平低于其他雄激素的诱导水平,尽管DHT和睾酮分别在10−8M和10−7M时将反激活提高到相似的水平。这些结果提示11-KT可能作为一种主要的雄激素在人体中发挥一定的作用。 11-KT不能转化为雌激素激素[1] 在女性个体中,睾酮既是雄激素又是雌激素的前体。为了确定11-KT是否是雌激素的前体,我们在人乳腺癌源性MCF-7细胞中使用含有ERE的报告质粒进行了荧光素酶测定,MCF-7细胞内源性表达芳香化酶和ERα。与E2相比,雄激素在较低浓度(10−11M和10−10M)下对荧光素酶活性没有影响(图5A)。然而,睾酮在高浓度和10−7M时激活er依赖性转录,睾酮作为E2有效。这种活性被芳香化酶抑制剂法唑完全抑制(图5B)。DHT在10−7M时以不依赖芳香酶的方式弱激活er介导的转激活。相比之下,即使在10−6M时,11-KT对er介导的交易激活没有影响(图5A;数据未显示)。这些结果表明,11-KT是一种不可芳香化的雄激素,不会转化为激活内质网介导的转激活的化合物。 |
酶活实验 |
酶免疫测定(EIAs)和液相色谱-串联质谱(LC-MS/MS)测定[1]
采用竞争EIA法测定KGN、H295R和人间质细胞培养液中睾酮、11-KT和E2的浓度。每个样品用EIA缓冲液稀释,使用孕酮、睾酮、11-KT和E2 EIA试剂盒在微孔板读取器中按照制造商的说明进行分析。另一方面,通过LC-MS/MS测定人血浆中类固醇激素的浓度,以便对临床样品进行最佳定量。人血浆样品的处理和定量睾酮,11-KT和E2的LC-MS/MS方法基于上述方法。 性类固醇激素和Vtg的测定 [2] 约0.8 mL血浆用于性类固醇激素和Vtg浓度测定。根据制造商的说明,使用卵黄蛋白原酶联免疫吸附测定试剂盒测定Vtg。睾酮放射免疫测定试剂盒测定T。该方法对t的最低检测限为0.02 ng/ML,所有抗体与密切相关的类固醇(如双氢睾酮)的交叉反应性<0.1%,为1.1 × 10−2%;17β-雌二醇,2.1 × 10−2%;雌三醇,6.2 × 10 - 15%;黄体酮,3.2 × 10 - 2%;11-KT, 1.2 × 10−2%。E2采用化学发光免疫法测定,使用定量测定试剂盒17β-雌二醇。E2的最低检测限<4.0 pg/ml。生产商提供的抗体交叉反应性如下:雌三醇<0.5%;孕酮< 1.5%;睾酮<0.01%。用logit (%B/B0)与对数浓度的线性模型建立标准曲线。所有样品一式两份分析。Vtg、T和E2的测定内平均方差分别为8.38、5.9和6.4%,均在可接受水平之内。 |
细胞实验 |
增殖试验[1]
MCF-7细胞或ar引入的细胞接种于DMEM/F-12中,DMEM/F-12中添加10%或2%的木炭/葡聚糖剥离- fbs,接种于96孔板中,1 × 103个细胞/孔。在播种后24小时,用含有不同浓度DHT、睾酮、11-KT或E2的培养基处理细胞。孵育后6天(亲代细胞)或9天(ar导入细胞),按照制造商的说明使用CellTiter 96水溶液试剂盒评估细胞增殖。为了评估芳香化酶抑制剂法唑或内质网拮抗剂氟维司汀对MCF-7细胞生长的影响,在有或没有这些药物的情况下进行了增殖试验。 实验2:v对肝脏和卵巢外植体靶基因表达、性类固醇浓度和Vtg合成的体外影响[2] 用40 μL乙醇(终孵育体积的0.16%)溶出1000 μM (3000 ng/mL) 11-KT(MW = 302.408)的原液,加入5 mL的DMEM/F12。 选择3只28月龄雌幼鱼,在胚胎发生前进行内镜检测。用400ppm的MS222麻醉后,将小蝌蚪短暂浸泡在75%的乙醇中,然后在无菌条件下切除卵巢和肝脏。从卵巢中心部分一贯切除的部分固定在Bouin溶液中进行组织学分析。脂肪组织去除后,剩余卵巢组织和肝脏分别用冷PBS (1X, PH = 7.4)洗涤,在培养基(DMEM/F12, 1:1, 1X,不含酚红)中切成1 cm3的碎片。采用6孔Costar培养板,片段在2.5 mL培养基中25℃孵育5天。每个处理和每个个体进行三次重复孵育。培养基由DMEM/F12 (1:1, 1X,无酚红)、1%青霉素-链霉素溶液、20%胎牛血清和0、10、100 μM 11-KT(0、30或300 ng/mL)组成。在培养结束时,外植体在液氮中快速冷冻,并在- 80°C保存直至分析。从每个培养皿中收集培养基,测定T、E2和Vtg的浓度。 |
动物实验 |
Animals and Synthetic 11-KT Powder [2]
For these experiments, 11-KT powder was synthetized in Academy of Military Medical Sciences, through reducing C17 ketone group of adrenosterone to hydroxyl with the catalytic reaction of sodium borohydride. Using standard 11-KT as control, the identification and purity of synthetized 11-KT was 99.9% checked by HPLC (High Performance Liquid Chromatography), and then stored at 4°C. Experiment 1: in vivo Effects of 11-KT on Ovarian Development, Target Gene Expression, Sex Steroid Concentrations and Vtg Synthesis [2] Manufacture of Slow-Release 11-KT Silastic Strips [2] The dry 11-KT was mixed and thoroughly homogenized with unpolymerized medical elastomer base and coagulator silastic MDX4-4210. After uniform mixing, the paste was dried and processed into silastic strips (1.5 mm in diameter and 30 mm in length). Each strip carried 25 mg 11-KT. All strips were kept at 4°C in aluminum foil until use. Animals and 11-KT Implantation [2] Twenty-eight-month old sterlets were randomly collected on Aug. 2015. After endoscopic detection under anesthesia, eighteen previtellogenic females were selected for implantation and divided into three balanced groups: one control group (355.30 ± 27.93 g, n = 6), two treatment groups consisting of a lower dose group (5 mg/kg, 375.12 ± 50.37 g, n = 6), and a high dose group (25 mg/kg, 405.83 ± 49.84 g, n = 6). No significant difference existed between groups (P = 0.142). Fish were fed with commercial standard diets daily. After being anesthetized with 400 ppm of MS222, a small ventral midline incision was performed on all sterlets. In the treatment groups, the appropriate length of 11-KT silastic strips were cut and implanted to achieve the corresponding dose (5 or 25 mg/kg, respectively). In the control group, silastic strips devoid of 11-KT were implanted in an identical manner as in the treated groups. Following surgery, the incisions were daubed erythromycin ointment to prevent wound infection. Then, sterlets were transferred to indoor cylinder tanks (1 m3) and reared in flowing water for 30 days. Water temperature in the tanks ranged from 16.8 to 21.4°C. |
参考文献 | |
其他信息 |
11-oxotestosterone is a 3-oxo Delta(4)-steroid that is testosterone carrying an additional oxo substituent at position 11. It has a role as an androgen, a marine xenobiotic metabolite and a human metabolite. It is a 3-oxo-Delta(4) steroid, an 11-oxo steroid, an androstanoid and a 17beta-hydroxy steroid. It is functionally related to a testosterone. It derives from a hydride of an androstane.
Context: 11-ketotestosterone (11-KT) is a novel class of active androgen. However, the detail of its synthesis remains unknown for humans. Objective: The objective of this study was to clarify the production and properties of 11-KT in human. Design, Participants, and Methods: Expression of cytochrome P450 and 11β-hydroxysteroid dehydrogenase types 1 and 2 (key enzymes involved in the synthesis of 11-KT) were investigated in human gonads. The production of 11-KT was investigated in Leydig cells. Plasma concentrations of testosterone and 11-KT were measured in 10 women and 10 men of reproductive age. Investigation of its properties was performed using breast cancer-derived MCF-7 cells. Results: Cytochrome P450 and 11β-hydroxysteroid dehydrogenase types 1 and 2 were detected in Leydig cells and theca cells. Leydig cells produced 11-KT, and relatively high levels of plasma 11-KT were measured in both men and women. There was no sexual dimorphism in the plasma levels of 11-KT, even though testosterone levels were more than 20 times higher in men than in women. It is noteworthy that the levels of testosterone and 11-KT were similar in women. In a luciferase reporter system, 11-KT activated human androgen receptor-mediated transactivation. Conversely, 11-KT did not activate estrogen receptor-mediated transactivation in aromatase-expressed MCF-7 cells, whereas testosterone did following conversion to estrogen. 11-KT did not affect the estrogen/estrogen receptor -mediated cell proliferation of MCF-7 cells. Furthermore, it significantly inhibited cell proliferation when androgen receptor was transfected into MCF-7 cells. Conclusions: The current study indicates that 11-KT is produced in the gonads and represents a major androgen in human. It can potentially serve as a nonaromatizable androgen. [1] In summary, we demonstrated that 11-KT is a major androgen and produced in gonads. Because androgens are essential for reproduction and physiology, their excess and deficiency often induce pathogenesis. Then, it is possible that 11-KT could be responsible for, and the novel target of therapies against, such diseases. In addition, it might provide novel insights for elucidating ambiguous AR-mediated phenomena.[1] In summary, we report that11-KT induced ovarian development without ovarian masculinization or sex reversal in vivo, as well as Vtg and lipid synthesis in vivo and in vitro. To our knowledge, this is the first report in sturgeon to describe the 11-KT effect on the development of the previtellogenic sterlet. Through detection of T, E2, and 11-KT concentrations in gonadal development stages of breeding Siberia sturgeon during a natural breeding season, Hamlin et al. reported 11-KT in females increased, beginning at the previtellogenic stage and peaking at the germinal vesicle stage, with a concomitant increase in E2 concentrations. Serum 11-KT concentrations were low in previtellogenic females of the Amur sturgeon (A. schrenckii), but increased at the beginning of vitellogenesis and peaked before E2 concentrations. Therefore, it appears that in sturgeon, 11-KT is an important factor initiating Vtg synthesis at previtellogenic stage, potentially through the activation of E2 secretion via Ar and Era signal pathways. However, detailed understanding of these pathways requires additional studies, such as RNA-sequencing or microRNA regulation, to decipher the molecular mechanisms involved. [2] |
分子式 |
C19H26O3
|
---|---|
分子量 |
302.41
|
精确质量 |
302.188
|
CAS号 |
564-35-2
|
PubChem CID |
5282365
|
外观&性状 |
White to off-white solid powder
|
密度 |
1.2±0.1 g/cm3
|
沸点 |
476.8±45.0 °C at 760 mmHg
|
闪点 |
256.3±25.2 °C
|
蒸汽压 |
0.0±2.7 mmHg at 25°C
|
折射率 |
1.569
|
LogP |
1.67
|
tPSA |
54.37
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
3
|
可旋转键数目(RBC) |
0
|
重原子数目 |
22
|
分子复杂度/Complexity |
577
|
定义原子立体中心数目 |
6
|
SMILES |
C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2C(=O)C[C@]4([C@H]3CC[C@@H]4O)C
|
InChi Key |
WTPMRQZHJLJSBO-XQALERBDSA-N
|
InChi Code |
InChI=1S/C19H26O3/c1-18-8-7-12(20)9-11(18)3-4-13-14-5-6-16(22)19(14,2)10-15(21)17(13)18/h9,13-14,16-17,22H,3-8,10H2,1-2H3/t13-,14-,16-,17+,18-,19-/m0/s1
|
化学名 |
(8S,9S,10R,13S,14S,17S)-17-hydroxy-10,13-dimethyl-2,6,7,8,9,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthrene-3,11-dione
|
别名 |
11-Ketotestosterone; 11-Oxotestosterone; 11-Keto-testosterone; UNII-KF38W1A85U; KF38W1A85U; 17beta-Hydroxyandrost-4-ene-3,11-dione; Androst-4-ene-3,11-dione, 17-hydroxy-, (17beta)-; ...; 564-35-2;
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: 100 mg/mL (330.68 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (8.27 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (8.27 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (8.27 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3068 mL | 16.5338 mL | 33.0677 mL | |
5 mM | 0.6614 mL | 3.3068 mL | 6.6135 mL | |
10 mM | 0.3307 mL | 1.6534 mL | 3.3068 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。