RO4987655

别名: CH4987655; CH-4987655; CH 4987655; RO4987655; RO-4987655; RO4987655; 3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-N-(2-hydroxyethoxy)-5-((3-oxomorpholino)methyl)benzamide; 3,4-Difluoro-2-[(2-Fluoro-4-Iodophenyl)amino]-N-(2-Hydroxyethoxy)-5-[(3-Oxo-1,2-Oxazinan-2-Yl)methyl]benzamide; CHEMBL1614766; RO 4987655 3,4-二氟-2-[(2-氟-4-碘苯基)氨基]-N-(2-羟基乙氧基)-5-[(3-氧代-[1,2]恶嗪-2-基)甲基]苯甲酰胺;RO4987655(CH-4987655) ;RO4987655(CH4987655)
目录号: V3012 纯度: ≥98%
PD 169316 是一种新型强效、细胞渗透性、特异性/选择性的 p38 MAPK 激酶抑制剂,IC50 值为 89 nM。
RO4987655 CAS号: 874101-00-5
产品类别: MEK
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
RO4987655(也称为 CH-4987655)是一种新型、口服生物可利用的、特异性的 MEK 激酶小分子抑制剂,对 MEK1/MEK2 的 IC50 为 5.2 nM。它针对 MAP2K1/MEK1,一种具有潜在抗癌活性的蛋白激酶。体外MEK1/2 IC50为5.2 nmol/L,有效阻止丝裂原激活蛋白激酶信号通路的激活和肿瘤细胞的生长。在异种移植模型中,口服 CH4987655 作为单一药物引起肿瘤总体消退。临床试验发现0.5、1、2、3和4mg的剂量是安全的且耐受性良好。未发现有临床意义的安全事件。
生物活性&实验参考方法
靶点
MEK1 (IC50 = 5.2 nM); MEK2 (IC50 = 5.2 nM)
体外研究 (In Vitro)
RO4987655 有效抑制丝裂原激活蛋白激酶信号通路激活和肿瘤细胞生长,抑制 MEK1/2 的体外 IC50 为 5.2 nM[1]。 RO4987655 以剂量依赖性方式抑制 NCI-H2122 细胞的增殖,IC50 值为 0.0065 μM。在 0.1 至 1.0 μM 的剂量范围内,RO4987655 最早在治疗后 2 小时即可抑制 pERK1/2[2]。
体内研究 (In Vivo)
在异种移植模型中,RO4987655 (CH4987655) 作为单一药物口服给药可完全根除肿瘤。 RO4987655 的 tmax 不到一小时,会被迅速吸收。 0.5 至 4 mg 的暴露量与剂量成正比。终末 t1/2 小于 25 小时,该处置是双相的。观察到较低的受试者间变异性; Cmax 和曲线下面积 (AUC) 的范围分别为 9%–23% 和 14%–25%。在较高剂量下,pERK 抑制率超过 80%,并且具有暴露依赖性。抑制性 Emax 模型(Emax ~100%;IC50 40.6 ng/mL)用于非线性混合效应模型来描述药代动力学-药效关系[1]。随机分配的研究组由雌性无胸腺裸鼠组成。使用数字卡尺,在第 0、1 和 3 天,使用剂量为 1.0、2.5 和 5.0 mg/kg RO4987655 来估计肿瘤大小。在此期间,载体治疗不会阻止 NCI-H2122 肿瘤异种移植物的生长。另一方面,RO4987655 治疗第 3 天,1.0 mg/kg 时的肿瘤生长抑制 (TGI) 为 119%,2.5 mg/kg 时为 145%,5.0 mg/kg 时为 150%。PET 成像表明[18F ] RO4987655 给药后 24 小时(第 1 天),异种移植物中的 FDG 摄取减少[2]。
酶活实验
RO4987655(也称为 CH-4987655)是一种新型、口服生物可利用的、特异性的 MEK 激酶小分子抑制剂,对 MEK1/MEK2 的 IC50 为 5.2 nM。丝裂原激活蛋白激酶激酶 1 (MAP2K1/MEK1) 可能具有抗肿瘤活性,是该药物的靶标。 MEK1/2抑制的体外IC50为5.2 nmol/L,可有效阻止丝裂原激活蛋白激酶信号通路的激活和肿瘤细胞的生长。
细胞实验
将热灭活的胎牛血清和 L-谷氨酰胺在人肺腺癌细胞系 NCI-H2122 的指定培养基中维持在指定浓度。在 37 摄氏度和 5% 二氧化碳的条件下,细胞会发育。将细胞在 96 孔板中暴露于不同浓度(0.00001、0.001、0.1 和 10 μM)的 RO4987655 72 小时后,使用 Cell Counting Kit-8 对活细胞进行计数 [2]。
动物实验
Mice: Mice that are athymic and naked in females It uses balb nu/nu that are 5 to 6 weeks old (18 to 22 g). Balb-nu/nu mice receive a subcutaneous injection of NCI-H2122 cells ((4×106/mouse). Mice are randomized into groups with comparable mean tumor volumes at the beginning of the study once tumors are established (100 to 200 mm3). On days 0, 1, and 3 with doses of 1.0, 2.5, and 5.0 mg/kg RO4987655, PET scans are used to estimate the tumor size. Days 0 (baseline), 1, 2, 3, and 9 of [18F] FDG-PET imaging are used to measure tumor volume and body weight. Calculations are made to determine tumor growth inhibition[2].
药代性质 (ADME/PK)
Purpose: CH4987655 (RO4987655) is an orally active and highly selective small-molecule MEK inhibitor. It potently inhibits mitogen-activated protein kinase signaling pathway activation and tumor cell growth, with an in vitro IC(50) of 5.2 nmol/L for inhibition of MEK1/2. Single-agent oral administration of CH4987655 resulted in complete tumor regressions in xenograft models. [1]
Experimental design: All 40 subjects received a single oral dose followed by 72 hrs of pharmacokinetic, pharmacodynamic, and safety/tolerability assessments. The pharmacodynamics were measured by changes in phosphorylated extracellular signal-regulated kinase (pERK) levels in a surrogate tissue peripheral blood mononuclear cells ex vivo stimulated by PMA. [1]
Results: Doses of 0.5, 1, 2, 3, and 4 mg were safe and well tolerated. No clinically significant safety event was observed. A total of 26 adverse events (n = 15) were reported: 21 mild, 5 moderate, and none severe. Moderate adverse events were experienced by one subject at 1 mg (autonomic nervous system imbalance) and three subjects at 4 mg (diarrhea, abdominal pain, autonomic nervous system and acne). CH4987655 was rapidly absorbed with a t(max) of approximately 1 h. Exposures were dose proportional from 0.5 to 4 mg. The disposition was biphasic with a terminal t(1/2) of approximately 25 hr. Intersubject variability was low, 9% to 23% for C(max) and 14% to 25% for area-under-the-curve (AUC). pERK inhibition was exposure dependent and was greater than 80% inhibition at higher doses. The pharmacokinetic-pharmacodynamic relationship was characterized by an inhibitory E(max) model (E(max) approximately 100%; IC(50) 40.6 ng/mL) using nonlinear mixed-effect modeling. [1]
Conclusions: A significant extent of pERK inhibition was achieved for a single dose that was considered to be safe and well tolerated in healthy volunteers.
参考文献

[1]. The safety, tolerability, pharmacokinetics, and pharmacodynamics of single oral doses of CH4987655 in healthy volunteers: target suppression using a biomarker. Clin Cancer Res. 2009 Dec 1;15(23):7368-74.

[2]. Tegnebratt T, et al. Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [(18)F] FDG-PET imaging combined with proteomic approaches. EJNMMI Res. 2014 Dec;4(1):34.

其他信息
RO4987655 has been used in trials studying the treatment of Neoplasms.
MEK Inhibitor RO4987655 is an orally active small molecule, targeting mitogen-activated protein kinase kinase 1 (MAP2K1 or MEK1), with potential antineoplastic activity. MEK inhibitor RO4987655 binds to and inhibits MEK, which may result in the inhibition of MEK-dependent cell signaling and the inhibition of tumor cell proliferation. MEK, a dual specificity threonine/tyrosine kinase, is a key component of the RAS/RAF/MEK/ERK signaling pathway that regulates cell growth; constitutive activation of this pathway has been implicated in many cancers.
Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. Methods: [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). Results: We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. Conclusions: We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.[2]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C20H19F3IN3O5
分子量
565.28
精确质量
565.032
元素分析
C, 42.49; H, 3.39; F, 10.08; I, 22.45; N, 7.43; O, 14.15
CAS号
874101-00-5
相关CAS号
874101-00-5
PubChem CID
11548630
外观&性状
White to off-white solid powder
密度
1.7±0.1 g/cm3
折射率
1.638
LogP
5.49
tPSA
103.62
氢键供体(HBD)数目
3
氢键受体(HBA)数目
9
可旋转键数目(RBC)
8
重原子数目
32
分子复杂度/Complexity
652
定义原子立体中心数目
0
SMILES
O=C(C1C(NC2C(F)=CC(I)=CC=2)=C(F)C(F)=C(CN2C(=O)CCCO2)C=1)NOCCO
InChi Key
FIMYFEGKMOCQKT-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H19F3IN3O5/c21-14-9-12(24)3-4-15(14)25-19-13(20(30)26-31-7-5-28)8-11(17(22)18(19)23)10-27-16(29)2-1-6-32-27/h3-4,8-9,25,28H,1-2,5-7,10H2,(H,26,30)
化学名
3,4-difluoro-2-(2-fluoro-4-iodoanilino)-N-(2-hydroxyethoxy)-5-[(3-oxooxazinan-2-yl)methyl]benzamide
别名
CH4987655; CH-4987655; CH 4987655; RO4987655; RO-4987655; RO4987655; 3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-N-(2-hydroxyethoxy)-5-((3-oxomorpholino)methyl)benzamide; 3,4-Difluoro-2-[(2-Fluoro-4-Iodophenyl)amino]-N-(2-Hydroxyethoxy)-5-[(3-Oxo-1,2-Oxazinan-2-Yl)methyl]benzamide; CHEMBL1614766; RO 4987655
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ≥ 40 mg/mL
Water: <1 mg/mL
Ethanol: <1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (4.42 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (4.42 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (4.42 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 10% DMSO+ 40% PEG300+ 5% Tween-80+ 45% saline: ≥ 2.5 mg/mL

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7690 mL 8.8452 mL 17.6903 mL
5 mM 0.3538 mL 1.7690 mL 3.5381 mL
10 mM 0.1769 mL 0.8845 mL 1.7690 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00817518 Completed Drug: RO4987655 Neoplasms Hoffmann-La Roche January 2009 Phase 1
生物数据图片
  • RO4987655

    Top, mean CH4987655 plasma concentration versus time profiles in healthy volunteers by dose groups (n = 6 treated per group) up to 24 h;2009 Dec 1;15(23):7368-74.

  • RO4987655

    CH4987655 plasma concentration versus %pERK inhibition relationship as characterized by an Emax model.2009 Dec 1;15(23):7368-74.

  • RO4987655

    A, RO4987655 plasma and effect concentrations versus PBMC pERK inhibition (all doses)2012 Sep 1;18(17):4794-805. Epub 2012 Jul 5.
相关产品
联系我们