规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
体外研究 (In Vitro) |
此外,在 H9c2 细胞中 H2O2 诱导的氧化过程中,葫芦巴碱似乎可以调节 caspase-3 和 caspase-9 基因以及抗氧化基因 Bcl-2 和 Bcl-XL。根据流式细胞术数据,葫芦巴碱可显着降低 H2O2 诱导的胰腺 H9c2 细胞数量 [1]。
|
---|---|
体内研究 (In Vivo) |
在链脲佐菌素诱导的糖尿病沉积物中,三甲硫灵会降低骨矿化并倾向于恶化骨机械特性。在用链脲佐菌素和烟酰胺处理的沉积物中,曲苯乃林显着提高了骨矿物质密度(BMD),并倾向于增加松质骨的强度。葫芦巴碱对链脲佐菌素产生的 BMD 有不同的影响。诱导系统增加了链脲佐菌素治疗引起的骨质疏松改变,当链脲佐菌素和烟酰胺一起服用时,会产生肠道非高血压的积极作用[2]。
|
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
... The concentration-time curves of trigonelline in rabbits after ... iv administration were shown to fit one-compartment and two-compartment open model, respectively. The main parameters after iv /administration/ of trigonelline were as follows: T1/2 alpha was 10.8 min, T1/2 beta was 44.0 min, K21 was 0.044 min-1, K10 was 0.026 min-1, K12 was 0.017 min-1, AUC was 931.0 mg.min/L . /It was concluded that/ trigonelline showed a middle rate of absorption and fast rate of elimination in rabbit... Metabolism / Metabolites ... Trigonelline (N-methylnicotinic acid) /is a metabolite of nicotinamide/. |
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
IDENTIFICATION AND USE: Trigonelline is a solid. Trigonelline, an alkaloid with potential antidiabetic activity, is present in considerable amounts in coffee. It is used in biochemical research. HUMAN EXPOSURE AND TOXICITY: Trigonelline promotes functional neurite outgrowth in human neuroblastoma SK-N-SH cells. ANIMAL STUDIES: Trigonelline showed significant central nervous system (CNS) stimulant activities in rats. Trigonelline differentially affected the skeletal system of rats with streptozotocin-induced metabolic disorders, intensifying the osteoporotic changes in streptozotocin-treated rats and favorably affecting bones in the non-hyperglycemic (nicotinamide/streptozotocin-treated) rats. The results indicate that, in certain conditions, trigonelline may damage bone. In rats, estrogen deficiency caused worsening of bone mineralization and mechanical properties of the tibial metaphysis, as well as increases in bone turnover markers. Administration of trigonelline did not affect the investigated parameters in nonovariectomized rats, but it worsened the mineralization and mechanical properties of cancellous bone in ovariectomized rats. Unfavorable effects of trigonelline on the skeletal system depended on the estrogen status. They were observed only in cancellous bone of estrogen-deficient rats. The results of bacteria mutation assays (Salmonella typhimurium strains TA98, YG1024 and YG1029) showed that trigonelline, alone or in combination with most of the single amino acids and mixtures of amino acids, yielded potent mutagenic activity. However, in another study it was found not mutagenic in the Salmonella plate incorporation assay and mouse lymphoma L5178Y TK +/- assay. Interactions The effects of both coffee components and coffee extract on the electrical responses of GABA(A) receptors expressed in Xenopus oocytes were studied by injecting cRNAs of the alpha(1) and beta(1) subunits of the bovine receptors. The aqueous extract of coffee dose-dependently inhibited the GABA-elicited responses, whereas the lipophilic extract of coffee by diethyl ether slightly potentiated it at low doses (0.1-0.4 uL/mL) but showed inhibition at high doses (0.5-0.8 uL/mL). Theophylline inhibited the response in a noncompetitive mechanism (K(i) = 0.55 mM), whereas theobromine and trigonelline hydrochloride inhibited it in a competitive manner, K(i) = 3.8 and 13 mM, respectively... /Trigonelline hydrochloride/ Non-Human Toxicity Values LD50 Rat oral 5 g/kg /from table/ LD50 Rat sc 5 g/kg /from table/ |
参考文献 |
|
其他信息 |
N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid.
Trigonelline has been reported in Amaranthus hybridus, Alternanthera paronychioides, and other organisms with data available. See also: Fenugreek seed (part of). Therapeutic Uses /EXPL THER/ Fenugreek seeds are known for their characteristic smell of soup seasoning and as an ingredient of Indian curry. Traditionally the seeds are used as macerate for the treatment of diabetes, cough, and flatulence, to increase breast milk secretion, and for anti-inflammatory and aphrodisiac effects. The use is limited by its unpleasant smell and bitter taste which can be modified by adding mint leaves to the macerate. Antidiabetic properties are attributed mainly to galactomannan, 4-hydroxyisoleucin (4-OH-Ile), diosgenin and trigonelline. These substances demonstrate direct antidiabetic properties in clinical studies by increasing insulin secretion (4-OH-Ile), decreasing insulin resistance and glucose resorption from the GIT (galactomannan) and improvement in B-cells regeneration (trigonelline). Besides this main effect, the herb improves blood lipid spectre (4-OH-Ile, diosgenin), and has reno-protective (4-OH-Ile, trigonelline), neuroprotective (trigonelline) and antioxidant (diosgenin, trigonelline) effects. Antidiabetic efficacy of trigonelline is comparable to glibenclamide treatment and more effective than sitagliptine therapy. Given the large body of evidence and promising results in comparison with standard pharmacotherapy, fenugreek active substances have a potential to become a source of new antidiabetic medication.Key words: fenugreek Trigonella foenum-graecum diabetes mellitus type 2 biological activity. /EXPL THER/ There is evidence that Trigonella foenum-graecum L. (fenugreek), a traditional Chinese herb, and its components are beneficial in the prevention and treatment of diabetes and central nervous system disease. The pharmacological activities of trigonelline, a major alkaloid component of fenugreek, have been more thoroughly evaluated than fenugreek's other components, especially with regard to diabetes and central nervous system disease. Trigonelline has hypoglycemic, hypolipidemic, neuroprotective, antimigraine, sedative, memory-improving, antibacterial, antiviral, and anti-tumor activities, and it has been shown to reduce diabetic auditory neuropathy and platelet aggregation. It acts by affecting beta cell regeneration, insulin secretion, activities of enzymes related to glucose metabolism, reactive oxygen species, axonal extension, and neuron excitability. However, further study of trigonelline's pharmacological activities and exact mechanism is warranted, along with application of this knowledge to its clinical usage. This review aims to give readers a survey of the pharmacological effects of trigonelline, especially in diabetes, diabetic complications and central nervous system disease. In addition, because of its pharmacological value and low toxicity, the reported adverse effects of trigonelline in experimental animal models and humans are briefly reviewed, and the pharmacokinetics of trigonelline are also discussed. |
分子式 |
C7H7NO2
|
---|---|
分子量 |
137.14
|
精确质量 |
137.047
|
CAS号 |
535-83-1
|
相关CAS号 |
Trigonelline chloride;6138-41-6
|
PubChem CID |
5570
|
外观&性状 |
White to light yellow solid powder
|
密度 |
1.2528 (rough estimate)
|
沸点 |
251.96°C (rough estimate)
|
熔点 |
260ºC (dec.)
|
折射率 |
1.554
|
LogP |
-3.91
|
tPSA |
44.01
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
2
|
可旋转键数目(RBC) |
0
|
重原子数目 |
10
|
分子复杂度/Complexity |
130
|
定义原子立体中心数目 |
0
|
InChi Key |
WWNNZCOKKKDOPX-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C7H7NO2/c1-8-4-2-3-6(5-8)7(9)10/h2-5H,1H3
|
化学名 |
1-methylpyridin-1-ium-3-carboxylate
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 本产品在运输和储存过程中需避光。 |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~7.14 mg/mL (~52.06 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 0.71 mg/mL (5.18 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 7.1 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 0.71 mg/mL (5.18 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 7.1mg/mL澄清的DMSO储备液加入到900μL 20%SBE-β-CD生理盐水中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 0.71 mg/mL (5.18 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 7.2918 mL | 36.4591 mL | 72.9182 mL | |
5 mM | 1.4584 mL | 7.2918 mL | 14.5836 mL | |
10 mM | 0.7292 mL | 3.6459 mL | 7.2918 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。