Vitamin D2 (Ergocalciferol)

别名: Viosterol; Vitamin D2; Ergocalciferol; Ercalciol; calciferol 维生素D2;丁二素;骨化醇;麦化骨化醇;麦角钙化(甾)醇;麦角骨化醇;alpha-骨化醇;钙化醇;Calciferol 钙化醇;α-骨化醇;钙化醇(维生素D2)-d6;骨化醇 USP标准品;麦角钙化醇;麦角钙化甾醇;麦角钙化甾醇 EP标准品
目录号: V5286 纯度: ≥98%
维生素 D2(麦角钙化醇;骨化醇;Ercalciol)是维生素 D 的一种形式,侧链上有双键,这与维生素 D3(侧链上没有双键)不同。
Vitamin D2 (Ergocalciferol) CAS号: 50-14-6
产品类别: VD VDR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
2g
5g
10g
25g
50g
Other Sizes

Other Forms of Vitamin D2 (Ergocalciferol):

  • 5,6-反式-维生素 d2
  • (R)-Vitamin D2 ((R)-Ergocalciferol; (R)-Calciferol; (R)-Ercalciol)
  • Vitamin D2-d6 (Ergocalciferol-d6; Calciferol-d6; Ercalciol-d6)
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
维生素 D2(麦角骨化醇;骨化醇;Ercalciol)是维生素 D 的一种,与维生素 D3(侧链上没有双键)不同,因为它的侧链上有一个双键。 VDR 激动剂就是这样。作为膳食补充剂,维生素 D2 是一种天然存在于食物中的物质。这种补充剂可以治疗和预防维生素 D 缺乏症。这涵盖了因肠道吸收受损或肝脏疾病引起的维生素 D 不足。甲状旁腺功能减退症相关的低血钙水平也可以用它来治疗。它可以注射到肌肉中或口服。
生物活性&实验参考方法
靶点
Human Endogenous Metabolite
体内研究 (In Vivo)
单独接受奥美拉唑或与限制食物摄入或麦角钙化醇联用五周后,与给予载体或较少饲喂的鸡相比,处死时的鸡体重减轻了 15-25% (P < 0.01)[2]。与单独使用麦角钙化醇或单独禁食相比,两种治疗方法的组合会导致更多的生长障碍和面部异常[3]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Ergocalciferol is absorbed in the intestine and carried to the liver in chylomicrons. Its intestinal absorption does not present limitations unless the presence of conditions related to fat malabsorption. However, for absorption to take place, the presence of bile is required.
The active form of ergocalciferol, calcitrol, cannot be maintained for long periods in storage tissue mainly in periods of dietary or UVB deprivation. Therefore, ergocalciferol and its metabolites are excreted via the bile with a minor contribution of renal elimination. This major fecal elimination is explained due to the cubilin-megalin receptor system-mediated renal reuptake of vitamin D metabolites bound to vitamin D binding protein.
The amount of circulating ergocalciferol is very limited as this compound is rapidly stored in fat tissue such as adipose tissue, liver and muscle. This is very obvious in reports that indicate that circulating ergocalciferol is significantly reduced in obese patients.
There are no formal reports regarding the clearance rate of ergocalciferol. Due to the structural similarity, it is recommended to consult this parameter with [cholecalciferol]. On the other hand, the proposed renal clearance of calcitriol is of 31 ml/min.
Both vitamin D2 & vitamin D3 are absorbed from the small intestine, although vitamin D3 may be absorbed more efficiently. The exact portion of the gut that is most effective in vitamin D absorption reflects the vehicle in which the vitamin is dissolved. Most of the vitamin appears first within chylomicrons in lymph.
The presence of bile is required for absorption of ergocalciferol and the extent of GI absorption may be decreased in patients with hepatic, biliary, or GI disease (e.g., Crohn's disease, Whipple's disease, sprue).
A longitudinal, randomized, double blind, placebo controlled study was conducted for 6 months to monitor ultraviolet B light exposure in human milk-fed infants both with and without supplemental vitamin D2, and to measure longitudinally the bone mineral content, growth, and serum concentrations of calcium, phosphorus, 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D, and parathyroid hormone. Sequential sampling was performed of 46 human milk-fed white infants; 24 received 400 IU/day of vitamin D2, and 22 received placebo. An additional 12 patients were followed who received standard infant formula. 83% of patients completed a full 6 months of the study. Ultraviolet B light exposure and measurements of growth did not differ between groups. At 6 months, the human milk groups did not differ significantly in bone mineral content or serum concentrations of parathyroid hormone or 1,25-dihydroxyvitamin D, although total 25-hydroxyvitamin D values were significantly less in the unsupplemented human milk group (23.53 + or - 9.94 vs 36.96 + or - 11.86 ng/ml; p< 0.01). However, 25-hydroxyvitamin D3 serum concentrations were significantly higher in the unsupplemented human milk-fed group compared with the supplemented group (21.77 + or - 9.73 vs 11.74 + or - 10.27 ng/ml, p< 0.01) by 6 months of age. It was concluded that unsupplemented, human milk-fed infants had no evidence of vitamin D deficiency during the first 6 months of life.
A comparison was made of the ability of ergocalciferol and cholecalciferol to elevate plasma concentrations of vitamin D and 25-hydroxyvitamin D in cats. Cholecalciferol, given as an oral bolus in oil, resulted in a rapid elevation of plasma concentration of cholecalciferol followed by a rapid decline. In contrast, 25-hydroxyvitamin D concentration in plasma increased until day 3 after administration and remained elevated for a further 5 days. When 337 microg of both cholecalciferol and ergocalciferol in oil were given as an oral bolus to 10 cats, the peak plasma concentrations of cholecalciferol and ergocalciferol occurred at 8 or 12 h after administration. Peak concentrations of cholecalciferol were over twice those of ergocalciferol (570 +/- 80 vs. 264 +/- 42 nmol/l). The area under the curve 0-169 h for cholecalciferol was also more than twice that for ergocalciferol. When ergocalciferol and cholecalciferol were administered in a parenteral oil-based emulsion, higher concentrations of 25-hydroxyvitamin D3 than 25-hydroxyvitamin D2 were maintained in plasma. When both vitamins were included in the diet in the nutritional range, plasma concentrations of 25-hydroxyvitamin D2 were 0.68 of those of 25-hydroxyvitamin D3. Discrimination against ergocalciferol by cats appears to result from differences in affinity of the binding protein for the metabolites of the two forms of vitamin D. These results indicate that cats discriminate against ergocalciferol, and use it with an efficiency of 0.7 of that of cholecalciferol to maintain plasma 25-hydroxyvitamin D concentration.
Osteoporosis diminishes the quality of life in adults with cystic fibrosis (CF). Vitamin D deficiency resulting from malabsorption may be a factor in the etiology of low bone mineral density (BMD) in patients with CF. OBJECTIVE: Absorption of oral ergocalciferol (vitamin D2) and the consequent response of 25-hydroxyvitamin D in 10 adults with CF and exocrine pancreatic insufficiency was compared with that of 10 healthy control subjects. DESIGN: In this pharmacokinetic study, CF patients and control subjects were pair-matched on age, sex, and race. Each subject consumed 2500 microg oral vitamin D2 with a meal. The CF group also took pancreatic enzymes that provided > or = 80000 U lipase. Blood samples were obtained at baseline and at 5, 10, 24, 30, and 36 h after vitamin D2 consumption to measure serum vitamin D2 and 25-hydroxyvitamin D concentrations. RESULTS: Vitamin D2 concentrations in all subjects were near zero at baseline. CF patients absorbed less than one-half the amount of oral vitamin D2 that was absorbed by control subjects (P < 0.001). Absorption by the CF patients varied greatly; 2 patients absorbed virtually no vitamin D2. The rise in 25-hydroxyvitamin D in response to vitamin D2 absorption was significantly lower over time in the CF group than in the control group (P = 0.0012). CONCLUSIONS: Vitamin D2 absorption was significantly lower in CF patients than in control subjects. These results may help explain the etiology of vitamin D deficiency in CF patients, which may contribute to their low BMD.
Metabolism / Metabolites
Ergocalciferol is inactive and hence, the first step in the body is ruled by the conversion of this parent compound to 25-hydroxyvitamin D by the action of CYP2R1 followed by the generation of the major circulating metabolite, 1,25-dihydroxyvitamin D or calcitrol. The generation of this major metabolite is ruled by the activity of CYP27B1 which is a key 1-hydroxylase and CYP24A1 which is responsible for the 25-hydroxylation. As part of the minor metabolism, ergocalciferol is transformed into 25-hydroxyvitamin D in the liver by the activity of D-25-hydroxylase and CYP2R1. As well, the formation of 24(R),25dihydroxyvitamin D is performed mainly in the kidneys by the action of 25-(OH)D-1-hydroxylase and 25-(OH)D-24-hydroxylase. Additionally, there are reports indicating significant activity of 3-epimerase in the metabolism of ergocalciferol which modifies the hydroxy group in C3 from the alpha position to a beta. The epimers formed seemed to have a reduced affinity for the vitamin D plasma proteins and to the vitamin D receptor. An alternative activation metabolic pathway has been reported and this process is characterized by the activity of CYP11A1 and its hydroxylation in the C-20. This 20-hydroxylated vitamin D seems to have similar biological activity than calcitriol.
Vitamin D ... is hydroxylated at the 25 position in liver to produce 25-hydroxy-vitamin D3 which is the major metabolite circulating in the plasma. The metabolite is further hydroxylated in the kidney to 1,25-dihydroxy-vitamin D3, the most active metabolite in initiating intestinal transport of calcium & phosphate & mobilization of mineral from bone.
A polar, biologically active metabolite of vitamin D2, 25-hydroxyergocalciferol, which is about 1.5 times more active in curing rickets in rats, has been isolated from pig plasma.
Dihydrotachysterol is a vitamin D analog that may be regaurded as a reduction product of vitamin D2 ... Dihydrotachysterol is about 1/450 as active as vitamin D in the antirachitic assay, but at high doses it is much more effective than vitamin D in mobilizing bone mineral.
Vitamin D2 has known human metabolites that include Vitamin D2 3-glucuronide.
Within the liver, ergocalciferol is hydroxylated to ercalcidiol (25-hydroxyergocalciferol) by the enzyme 25-hydroxylase. Within the kidney, ercalcidiol serves as a substrate for 1-alpha-hydroxylase, yielding ercalcitriol (1,25-dihydroxyergocalciferol), the biologically active form of vitamin D2.
Half Life: 19 to 48 hours (however, stored in fat deposits in body for prolonged periods).
Biological Half-Life
Ergocalciferol can be found circulation for 1-2 days. This quick turnover is presented due to hepatic conversion and uptake by fat and muscle cells where it is transformed to the active form.
19 to 48 hours (however, stored in fat deposits in body for prolonged periods).
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
Vitamin D2 is the form of vitamin D most commonly added to foods and nutritional supplements. Vitamin D2 must be transformed (hydroxylated) into one of two active forms via the liver or kidney. Once transformed, it binds to the vitamin D receptor that then leads to a variety of regulatory roles. Vitamin D plays an important role in maintaining calcium balance and in the regulation of parathyroid hormone (PTH). It promotes renal reabsorption of calcium, increases intestinal absorption of calcium and phosphorus, and increases calcium and phosphorus mobilization from bone to plasma. Vitamin D2 and its analogs appear to promote intestinal absorption of calcium through binding to a specific receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein. Activated ergocalciferol increases serum calcium and phosphate concentrations, primarily by increasing intestinal absorption of calcium and phosphate through binding to a specific receptor in the mucosal cytoplasm of the intestine. Subsequently, calcium is absorbed through formation of a calcium-binding protein. 25-hydroxyergocalciferol is the intermediary metabolite of ergocalciferol. Although this metabolite exhibits 2-5 times more activity than unactivated ergocalciferol in curing rickets and inducing calcium absorption and mobilization (from bone) in animals, this increased activity is still insufficient to affect these functions at physiologic concentrations. Activated ergocalciferol stimulate resorption of bone and are required for normal mineralization of bone. Physiological doses of ergocalciferol also promotes calcium reabsorption by the kidneys, but the significance of this effect is not known.
Toxicity Data
LD50 = 23.7 mg/kg (Orally in mice); LD50 = 10 mg/kg (Orally in rats ).
Interactions
The effect of calcitriol (1,25-dihydroxyvitamin D3) on the conversion of ergocalciferol (vitamin D2) to 25-hydroxyvitamin D in 20 normal subjects receiving 2 separate doses of ergocalciferol, one with and one without concomitant administration of calcitriol is described. The concurrent administration of the 2 drugs made no difference to serum calcitriol concentrations.
The effects of glutethimide therapy, 500 mg/day, on the metabolism of vitamin D in a 77 yr old female patient who had taken an overdose of vitamin D2 are reported. Hypercalcemia in this patient was associated with raised serum concentrations of total 25-hydroxyvitamin D and total 1,25-dihydroxyvitamin D. Eight days after administration of glutethimide, plasma gamma-glutamyltransferase activity rose above the upper limit of normal, peaking at 90 IU/L on days 18-22 of therapy. The plasma calcium concentration fell to within the normal range on day 13. The serum concentration of 1,25-dihydroxyvitamin D began to fall within 4 days, and after 8 days it was near the lower limit of the reference range, at 70 pmol/L. The serum concentration of total 25-hydroxyvitamin D did not change appreciably until hepatic enzymes were induced; thereafter it fell gradually. Although the 25-hydroxyvitamin D concentration remained high, the concentration of 1,25-dihydroxyvitamin D did not rise again but remained within the lower part of the normal range.
The effect of a high cholesterol diet and corticosteroids on the toxicity of vitamin D2 in rats was studied. Vitamin D2 was administered orally at the dosage of 5X10+4 to 60X10+4 IU/kg, once daily for 4 days. Animals fed cholesterol showed a decrease in mortality due to vitamin D2 treatment. Dietary cholesterol inhibited toxic responses such as a diminished growth rate following anorexia, elevated serum calcium level and calcium deposition in tissues, which were produced by a sublethal dose of vitamin D2 (20X10+4 IU/kg, once daily for 4 days). Animals pretreated with the high cholesterol diet from 2 wk before the first vitamin D2 administration showed much more symptomatic relief than those given this diet after the first vitamin D2 administration. On the other hand, dexamethasone as well as corticosterone remarkably increased the mortality due to vitamin D2. The degree of vitamin D2 toxicity, enhanced by dexamethasone, was correlated with the degree of hypercalcemia and tissue calcification. Therefore, the inhibitory effect of cholesterol is not likely to be due to activation of the cholesterol corticosterone system in the adrenal gland.
The effect of short term treatment with pharmacological doses of vitamin D2 or vitamin D3 on the serum concentration of 1,25(OH)2D metabolites was examined in epileptic patients on chronic anticonvulsant drug therapy. Nine patients were studied before and after treatment with vitamin D2 4000 IU daily for 24 wk and 10 before and after treatment with vitamin D3 in the same dose. Before treatment the serum concentrations of 1,25(OH)2D and 25(OH)D were significantly lower in epileptics than in normal subjects (p< 0.01). Vitamin D2 treatment increased the serum concentration of 1,25(OH)2D2, but a corresponding decrease in 1,25(OH)2D3 resulted in an unchanged serum concentration of total 1,25(OH)2D. The serum concentration of 25(OH)D2 and 25(OH)D increase significantly, whereas there was a small decrease in 25(OH)D3. Vitamin D3 treatment did not change the serum concentration of 1,25(OH)2D3 whereas serum 25(OH)D3 increased significantly. The correlation between the serum ratio of 1,25(OH)2D2/1,25(OH)2D3 and 25(OH)D2/25(OH)D3 estimated on vitamin D2 treated epileptic patients and normal subjects was highly significant (p< 0.01). The data indicate that the serum concentration of 1,25(OH)2D2 and 1,25(OH)2D3 are directly proportional to the amount of their precursors 25(OH)D2 and 25(OH)D3 and that the concentration of total 1,25(OH)2D is tightly regulated.
Vitamin D analogs should be administered with caution in patients receiving cardiac glycosides, because hypercalcemia in these patient may result in cardiac arrhythmias. Vitamin D analogs should also be used with caution in patients with increased sensitivity to these drugs. /Vitamin D analogs/
参考文献

[1]. Ergocalciferol and cholecalciferol in CKD. Am J Kidney Dis. 2012 Jul;60(1):139-56.

[2]. Chicken parathyroid hormone gene expression in response to gastrin, omeprazole, ergocalciferol, and restricted food intake. Calcif Tissue Int. 1997 Sep;61(3):210-5.

[3]. Growth retardation induced in rat fetuses by maternal fasting and massive doses of ergocalciferol. J Nutr. 1987 Feb;117(2):342-8.

其他信息
Therapeutic Uses
MEDICATION (VET): ... Recommended for prophylaxis of milk fever in cows. ... Prevent atrophic rhinitis in pigs. ... Aid fracture healing in cats and dogs.
MEDICATION (VET): To be effective ... supplementation with Ca & PO4. ... Fish meals & irradiated yeast may be used as supplemental ... source. ... Diets are routinely supplemented ... 1400-1600 IU/kg. Therapy for rickets ... Level 10-20 times daily requirement, alternate days for 1 wk. /Vitamin D/
In adults and children with nutritional rickets or osteomalacia and normal GI absorption, oral administration of ... ergocalciferol daily results in normal serum calcium and phosphate concentrations in about 10 days, radiographic evidence of healing of bone within 2-4 wk, and complete healing in about 6 months. ... Diet should be corrected and, after healing has occurred, supplemental doses of ergocalciferol may be discontinued in patients with normal GI absorption. In adults with severe malabsorption and vitamin D deficiency, /daily/ dosages ... have been given to correct osteomalacia. In children with malabsorption, oral ergocalciferol dosages ... have been recommended. In vitamin D-deficient infants with tetany and rickets, calcium should be administered orally or iv to control tetany. Vitamin D deficiency is then treated orally with /a daily dose/ of ergocalciferol ... until the bones have healed, ... .
In adults with Fanconi syndrome, oral ergocalciferol .. have been given along with treatment of acidosis. In children with Fanconi syndrome oral ergocalciferol ... have been used.
For more Therapeutic Uses (Complete) data for VITAMIN D2 (11 total), please visit the HSDB record page.
Drug Warnings
... Ergocalciferol should be administered with extreme caution, if at all, to patients with impaired renal function and with extreme caution in patient with heart disease, renal stones, or arterioscleroses.
Initial signs and symptoms ... consists of weakness, fatigue, lassitude, headache, nausea, vomiting, and diarrhea. Obtundation and coma may develop. Early impairment of renal function from hypercalcemia is manifest by polyuria, polydipsia, nocturia, decreased urinary concentration ability, and proteinuria.
Pharmacodynamics
After the activation of the vitamin D receptor, some of the biological changes produced by ergocalciferol include mobilization and accretion of calcium and phosphorus in the bone, absorption of calcium and phosphorus in the intestine, and reabsorption of calcium and phosphorus in the kidney. Some other effects known to be produced due to the presence of vitamin D are osteoblast formation, fetus development, induction of pancreatic function, induction of neural function, improvement of immune function, cellular growth and cellular differentiation. When compared to its vitamin D counterpart [cholecalciferol], ergocalciferol has been shown to present a reduced induction of calcidiol and hence, it is less potent. Ergocalciferol supplementation in patients with end-stage renal disease has been shown to generate a significant benefit in lab parameters of bone and mineral metabolism as well as improvement in glycemic control, serum albumin levels and reduced levels of inflammatory markers.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C28H44O
分子量
396.65
精确质量
396.339
元素分析
C, 84.79; H, 11.18; O, 4.03
CAS号
50-14-6
相关CAS号
5,6-trans-Vitamin D2;51744-66-2;(R)-Vitamin D2;116559-84-3;Vitamin D2-d6;1311259-89-8
PubChem CID
5280793
外观&性状
White to off-white solid powder
密度
1.0±0.1 g/cm3
沸点
504.2±29.0 °C at 760 mmHg
熔点
114-118 °C(lit.)
闪点
218.2±16.5 °C
蒸汽压
0.0±2.9 mmHg at 25°C
折射率
1.530
LogP
9.56
tPSA
20.23
氢键供体(HBD)数目
1
氢键受体(HBA)数目
1
可旋转键数目(RBC)
5
重原子数目
29
分子复杂度/Complexity
678
定义原子立体中心数目
6
SMILES
[C@]1(CC[C@]2([H])[C@@]1(CCC/C/2=C\C=C1/C(CC[C@H](O)C/1)=C)C)([C@H](C)/C=C/[C@H](C)C(C)C)[H]
InChi Key
MECHNRXZTMCUDQ-RKHKHRCZSA-N
InChi Code
InChI=1S/C28H44O/c1-19(2)20(3)9-10-22(5)26-15-16-27-23(8-7-17-28(26,27)6)12-13-24-18-25(29)14-11-21(24)4/h9-10,12-13,19-20,22,25-27,29H,4,7-8,11,14-18H2,1-3,5-6H3/b10-9+,23-12+,24-13-/t20-,22+,25-,26+,27-,28+/m0/s1
化学名
(1S,3Z)-3-[(2E)-2-[(1R,3aS,7aR)-1-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexan-1-ol
别名
Viosterol; Vitamin D2; Ergocalciferol; Ercalciol; calciferol
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: (1). 本产品在运输和储存过程中需避光。  (2). 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。  (3). 该产品在溶液状态不稳定,请现配现用。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~31.3 mg/mL (78.8 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: 2.08 mg/mL (5.24 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.5211 mL 12.6056 mL 25.2111 mL
5 mM 0.5042 mL 2.5211 mL 5.0422 mL
10 mM 0.2521 mL 1.2606 mL 2.5211 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Effect of Vitamin D Supplementation on Chemotherapy Side Effects After Adjuvant Chemotherapy for Breast Cancer
CTID: NCT06642441
Phase: N/A    Status: Not yet recruiting
Date: 2024-10-22
Vitamin D Deficiency in Adults Following a Major Burn Injury
CTID: NCT05084248
Phase: Phase 4    Status: Recruiting
Date: 2024-10-18
Effect of Vitamin D Supplementation on the Efficacy and Adverse Effects of Neoadjuvant Therapy in Patients With Breast Cancer
CTID: NCT06642428
Phase: N/A    Status: Not yet recruiting
Date: 2024-10-15
The Effects of Vitamin D and
A pilot randomised controlled trial to determine if vitamin D treatment will result in a greater bone mass acquisition in pubertal girls
CTID: null
Phase: Phase 1, Phase 2    Status: Completed
Date: 2006-04-14
Does vitamin D improve markers of vascular health in type 2 diabetes?
CTID: null
Phase: Phase 4    Status: Completed
Date: 2005-09-26
View More

Does Vitamin D supplementation improve function and quality of life in older heart failure patients - A double blind, placebo controlled trial
CTID: null
Phase: Phase 4    Status: Completed
Date: 2005-03-29

相关产品
联系我们