| 规格 | 价格 | 库存 | 数量 |
|---|---|---|---|
| 50mg |
|
||
| 100mg |
|
||
| 250mg |
|
||
| 500mg |
|
||
| 1g |
|
| 靶点 |
Microbially derived matrix metalloproteinases (MMPs) and zinc peptidase
|
|---|---|
| 体外研究 (In Vitro) |
胶原酶被认为在组织修复和再生过程中对细胞迁移和胶原重塑很重要。激活的胶原酶产生特征性的3/4胶原片段
|
| 参考文献 | |
| 其他信息 |
Non-invasive therapeutic methods have recently been used in medical sciences. Enzymes have shown high activity at very low concentrations in laboratories and pharmaceutical, enabling them to play crucial roles in different biological phenomena related to living organism, especially human medicine. Recently, using the therapeutic methods based on non-invasive approaches has been emphasized in medical society. Researchers have focused on producing medicines and tools reducing invasive procedures in medical. Collagenases are proteins which catalyze chemical processes and break the peptide bonds in collagen. Collagen may be generated more than the required amount or produced in unsuitable sites or may not degrade after a certain time. In such cases, using an injectable collagenase or its ointment can be helpful in collagen degradation. In both in vitro and in vivo tests, it has been revealed that collagenases have several therapeutic properties in wound healing, burns, nipple pain and some diseases including intervertebral disc herniation, keloid, cellulite, lipoma among others. This review describes the therapeutic application of collagenase in medical sciences and the process for its production using novel methods, paving the way for more effective and safe applications of collagenases.
[1]
Therapeutic methods based on non-invasive approaches have recently been emphasized in medical community. Researchers have focused on producing medicines and tools that reduce invasive procedures in medical practice. Enzymes have important capacity in pharmaceuticals activities due to their highly selective character and high specific at very low concentrations. True collagenases cleave helical regions of collagen molecules in fibrillar form under various physiological conditions of pH and temperature. However, it is known that gelatin and the non-helical regions of collagen molecules could be degraded by numerous mammalian proteases, including pepsin, trypsin, chymotrypsin, papain, and other tissue enzymes. The study of collagenases started at the end of last century, followed by the isolation of an extracellular enzyme, namely Clostridium and then by identification and characterization of a number of other collagenases of both bacterial and mammalian origin. Until recently, the production of true collagenases by bacteria has been considered to be confined to only a few species, such as clostridia and a small number of other organisms, notably a strain of Vibrio alginolyticus (formerly Achromobacter iophagus). Unlike animal collagenases enzyme that split collagen in its native triple-helical structure, collagenases from bacteria differ from those of vertebrates, which demonstrate broader substrate specificity. Regarding its recently proposed application, collagenase enzyme appears to be a convenient and a cheap medication for the treatment of burns, wound healing, and some other diseases in near future. However, it seems to be produced and used as a drug in clinics due to gaps in data and needs for further research. In the current review, all available and relevant published papers pertaining to therapeutic application of collagenase in human diseases were used. Human diseases and collagenases have been the center of this review, while role of collagenases in the treatment of more specific diseases that excessive collagen deposition is the main problem were emphasized. Furthermore, collagenases can be applied in the isolation of liver parenchymal as well as fat and adrenal intact animal cells and in cell culture after their separation. To sum up, this review describes the therapeutic application of collagenase in medical sciences and the process for its production using novel methods, which paves a way for more effective and safe applications of collagenases. There are some hope that future investigations can develop methods and processes to produce collagenase with new origins such as Lucilia sericata, which is non-pathogenic and very important to wound healing. [1] |
| CAS号 |
9001-12-1
|
|---|---|
| 外观&性状 |
Off-white to light brown solid
|
| LogP |
21.9
|
| tPSA |
25.8
|
| SMILES |
CCCCCCCC[C@H]1CC[C@@]2([C@@]1(CC[C@]3(C2CC[C@@]4([C@@]3(CC5=C(C4)N=C6C[C@]7([C@@](CCC8[C@@]7(CC[C@]9([C@]8(CC[C@@H]9CCCCCCCC)C)C)C)(CC6=N5)C)C)C)C)C)C)C
|
| InChi Key |
YRQNKMKHABXEJZ-UVQQGXFZSA-N
|
| InChi Code |
InChI=1S/C60H100N2/c1-13-15-17-19-21-23-25-43-27-33-55(7)49-29-31-51(3)39-45-47(41-59(51,11)57(49,9)37-35-53(43,55)5)61-46-40-52(4)32-30-50-56(8)34-28-44(26-24-22-20-18-16-14-2)54(56,6)36-38-58(50,10)60(52,12)42-48(46)62-45/h43-44,49-50H,13-42H2,1-12H3/t43-,44-,49?,50?,51-,52-,53+,54+,55-,56-,57-,58-,59-,60-/m0/s1
|
| 化学名 |
(5S,6S,9R,10S,13S,17S,23S,24S,27R,28S,31S,35S)-5,6,9,13,17,23,24,27,31,35-decamethyl-10,28-dioctyl-2,20-diazanonacyclo[19.15.0.03,19.05,17.06,14.09,13.023,35.024,32.027,31]hexatriaconta-1(21),2,19-triene
|
| HS Tariff Code |
2934.99.9001
|
| 存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| 运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
| 溶解度 (体外实验) |
H2O : ~50 mg/mL
|
|---|---|
| 溶解度 (体内实验) |
注意: 如下所列的是一些常用的体内动物实验溶解配方,主要用于溶解难溶或不溶于水的产品(水溶度<1 mg/mL)。 建议您先取少量样品进行尝试,如该配方可行,再根据实验需求增加样品量。
注射用配方
注射用配方1: DMSO : Tween 80: Saline = 10 : 5 : 85 (如: 100 μL DMSO → 50 μL Tween 80 → 850 μL Saline)(IP/IV/IM/SC等) *生理盐水/Saline的制备:将0.9g氯化钠/NaCl溶解在100 mL ddH ₂ O中,得到澄清溶液。 注射用配方 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (如: 100 μL DMSO → 400 μL PEG300 → 50 μL Tween 80 → 450 μL Saline) 注射用配方 3: DMSO : Corn oil = 10 : 90 (如: 100 μL DMSO → 900 μL Corn oil) 示例: 以注射用配方 3 (DMSO : Corn oil = 10 : 90) 为例说明, 如果要配制 1 mL 2.5 mg/mL的工作液, 您可以取 100 μL 25 mg/mL 澄清的 DMSO 储备液,加到 900 μL Corn oil/玉米油中, 混合均匀。 View More
注射用配方 4: DMSO : 20% SBE-β-CD in Saline = 10 : 90 [如:100 μL DMSO → 900 μL (20% SBE-β-CD in Saline)] 口服配方
口服配方 1: 悬浮于0.5% CMC Na (羧甲基纤维素钠) 口服配方 2: 悬浮于0.5% Carboxymethyl cellulose (羧甲基纤维素) 示例: 以口服配方 1 (悬浮于 0.5% CMC Na)为例说明, 如果要配制 100 mL 2.5 mg/mL 的工作液, 您可以先取0.5g CMC Na并将其溶解于100mL ddH2O中,得到0.5%CMC-Na澄清溶液;然后将250 mg待测化合物加到100 mL前述 0.5%CMC Na溶液中,得到悬浮液。 View More
口服配方 3: 溶解于 PEG400 (聚乙二醇400) 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。