规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
靶点 |
Sortilin ( IC50 = 330 nM )
|
---|---|
体外研究 (In Vitro) |
AF38469已进行进一步研究。应当注意,在3HNTS测定中,神经紧张素本身的结合IC50为360 nM,因此AF38469与这种sortilin底物基本相等。
在CEREP下运行的约70个靶标的标准选择性panel中,AF38469在10μM下没有显示出>50%的抑制或刺激。重要的是,AF38469对NTR1受体没有活性。此外,AF38469对已知结合酸性分子的选定靶点(δ-阿片类、GPR40、PPARδ、EP1、血管紧张素AT1、内皮素ETA和B、MMP-12)没有活性。因此,总体而言,AF38469的选择性分析表明其与sortilin具有高度特异性的相互作用[1]。
成功获得了sortilin和AF38469的共晶体,并通过X射线晶体学确定了其结构,分辨率为2.78Å。图1显示了AF38469晶体结构与sortilin结合的神经紧张素C末端区域结构的叠加。AF38469与sortilin的相互作用与神经紧张素的C末端Leu残基相似。AF38469通过其羧酸与Arg292形成盐桥,CF3基团与Leu侧链的iPr占据相同的疏水结合口袋,酰胺N-H与Tyr318形成氢键供体相互作用。吡啶甲基与Phe317形成疏水π相互作用,类似于神经降压素Ile12的疏水相互作用。该结构还有助于使上述许多结构-活性关系合理化,例如间甲氨基酸5取代基的关键作用、5-Ph(10f)的无活性(由于尺寸排除)以及羧酸官能团的关键作用。 图2显示了AF38469与先前报道的小分子抑制剂AF40431的结合模式的叠加。AF38469和AF40431表现出许多常见的相互作用,包括神经降压素的盐桥和亮氨酸口袋结合特征,但有趣的是,前者的吡啶环和甲基取代基与后者的吡喃环和甲基取代基几乎一致。 预计sortilin-AF38469复合物的结构将用于通过经典的基于结构的药物设计进一步推动化学型的优化[1]。 |
体内研究 (In Vivo) |
AF38469 (1 mg/kg;iv) 在十二烷基苯磺酸钠中具有低循环容量(血容量为 0.7 L/kg)和低清除率(4.8 L/h/kg),半衰期(t1/2)为 1.2 h[1 】。
|
酶活实验 |
如前所述(Andersen,2013,提交),用10摩尔过量的AF438469结晶1小时。将1μl sortilin-AF38469与1μl储层混合,并在24孔结晶板中在292 K下使用坐滴蒸汽扩散法与500μl储器平衡。在0.1 M HEPES Tris pH 7.3、0.4 M丙二酸钠、27%(w/v)PEG 3350和4.5%(v/v)甘油中获得了最佳的衍射晶体。晶体在两周内生长到200 x 100 x 50μm的尺寸。通过向储器中加入100μl 80%(v/v)PEG400对晶体进行脱水,并将其从母液中装入Litholoops(分子尺寸)中,用环路边缘轻轻接触滴孔侧面,将多余的母液浸入,并在液氮中快速冷却。在瑞士光源(SLS)的X06DA(PXIII)光束线上,使用PILATUS 2M-F探测器在100 K下收集了3600个振荡图像的完整单波长(λ=0.9Å)数据集,振荡角度为0.1o。衍射图像在XDS中处理,在SCALA中缩放。使用PHASER程序,使用基于sortilin与神经降压素复合物(PDB ID 3F6K)结构的搜索模型进行分子置换。在PHENIX中进行了刚体细化、配体坐标和约束的生成、省略图的计算和细化。使用Coot进行建模和分析。使用Molprobity对最终模型质量进行了分析。使用PyMol[1]进行叠加并制备结构图。[1]
|
药代性质 (ADME/PK) |
Rat pharmacokinetics: [1]
AF38469 has a low volume of distribution (relative to blood volume of 0.7 l/kg) and low clearance (relative to liver blood flow of ca. 4.8 l/h/kg), and a half-life of 1.2 h. The initial exposure in plasma is high, due in part to the low volume of distribution. The oral bioavailability is 35%. Simple calculations based on Cmax, free fraction and the sortilin potency suggest that a free plasma concentration of AF38469 ca. 2 fold higher than its IC50 is obtained at Cmax from an oral 2 mg/kg dose. In Vitro Solubility 134 μg/ml, plasma free fraction 2% intrinsic clearance 0.4 l/h/kg Oral (2 mg/kg) Cmax 12850 ng/ml i.v. (1 mg/kg) Clb 0.03 L/h/Kg, t1/2 1.2 h, Vss 0.02 L/kg In principle a phthalimide could act as a pro-drug for an AF38469 type compound, with hydrolysis in vivo affording the corresponding phthalamic acid by an analogous process to that which lead to the liberation and identification of compound 2 itself (Scheme 1). Whilst an asymmetrically substituted phthalimide such as 1 would afford a mixture of regioisomers on hydrolysis (viz. 2 and 3), a symmetrical phthalimide would afford a single phthalamic acid (e.g. Scheme 4). To this end phthalimide 14 was investigated as a potential oral prodrug for phthalamic acid 10k. However, whilst oral administration of the phthalimide (14) did afford systemic exposure of phthalamic acid 10k, the free exposure of the acid was not an improvement on the exposure of AF38469 obtained via oral administration. |
参考文献 | |
其他信息 |
Sortilin is a type I membrane receptor belonging to the vacuolar protein sorting 10 protein (VPS10P) family of sorting receptors. Sortilin is widely expressed in both the central nervous system and periphery. It mediates a number of important physiological functions via trafficking of, and signalling with, a variety of different protein partners. For example sortilin is involved in signalling via the neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Indeed, in complex with the protein p75, sortilin has been reported to form the receptor for pro-neurotrophin-mediated apoptotic effects leading to degeneration and cell death in cellular and animal models.1 Sortilin has also been demonstrated to interact with apolipoprotein B100 in the Golgi and facilitate the export of apoB100-containing lipoproteins, thereby regulating plasma low-density lipoprotein (LDL) cholesterol levels, a key contributor to atherosclerosis and ischemic heart disease. Recently, sortilin was also shown to function as a high affinity receptor for progranulin, and to mediate clearance of progranulin by binding followed by cellular uptake and distribution to lysosomes.
[1]
In summary we have identified a potent, selective and orally bioavailable inhibitor for the VPS10P family sorting receptor Sortilin. We hope and anticipate that AF38469 will serve as an important tool to further delineate the biology of Sortilin, and to facilitate evaluation of the therapeutic potential of this protein. [1] |
分子式 |
C15H11F3N2O3
|
---|---|
分子量 |
324.26
|
精确质量 |
324.072
|
元素分析 |
C, 55.56; H, 3.42; F, 17.58; N, 8.64; O, 14.80
|
CAS号 |
1531634-31-7
|
相关CAS号 |
1531634-31-7
|
PubChem CID |
72706115
|
外观&性状 |
Off-white to light yellow solid powder
|
LogP |
3.432
|
tPSA |
79.29
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
7
|
可旋转键数目(RBC) |
3
|
重原子数目 |
23
|
分子复杂度/Complexity |
456
|
定义原子立体中心数目 |
0
|
SMILES |
O=C(NC1=CC=CC(C)=N1)C2=CC=C(C(F)(F)F)C=C2C(O)=O
|
InChi Key |
JWCUSQCZMQIBMR-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C15H11F3N2O3/c1-8-3-2-4-12(19-8)20-13(21)10-6-5-9(15(16,17)18)7-11(10)14(22)23/h2-7H,1H3,(H,22,23)(H,19,20,21)
|
化学名 |
2-[(6-methylpyridin-2-yl)carbamoyl]-5-(trifluoromethyl)benzoic acid
|
别名 |
AF-38469; AF38469; 1531634-31-7; 2-[(6-Methylpyridin-2-Yl)carbamoyl]-5-(Trifluoromethyl)benzoic Acid; 2-((6-methylpyridin-2-yl)carbamoyl)-5-(trifluoromethyl)benzoic acid; CHEMBL3098745; MFCD28160694; 4n7e; SCHEMBL15903106; AF 38469
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: ~65 mg/mL (~200.5 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: 2.5 mg/mL (7.71 mM) (饱和度未知) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浮液;超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.08 mg/mL (6.41 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 View More
配方 3 中的溶解度: 5%DMSO + Corn oil: 3.25mg/ml (10.02mM) 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0839 mL | 15.4197 mL | 30.8394 mL | |
5 mM | 0.6168 mL | 3.0839 mL | 6.1679 mL | |
10 mM | 0.3084 mL | 1.5420 mL | 3.0839 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。