规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
靶点 |
Akt1 (IC50 = 58 nM); Akt2 (IC50 = 210 nM); Akt3 (IC50 = 2119 nM)
|
---|---|
体外研究 (In Vitro) |
在基于细胞的 IPKA (C33A) 测定中,Akti-1/2 抑制 Akt1 和 Akt2,IC50 分别为 305 nM 和 2086 nM。 Akti-1/2 通过显着提高 caspase-3 活性导致 HT29、MCF7 和 A2780 细胞凋亡。 [1] Akti-1/2 阻止胰岛素控制肝细胞中 PEPCK、G6Pase 和 FOXO1 的表达。 [2] Akti-1/2 还通过阻断 PKB 来强烈增强 PAR-1 介导的血小板聚集。 [3] Akti-1/2 抑制 HCC827、NCI-H522、NCI-1651 和 PC-9 细胞的生长,IC50 值为 4.7 μM、7.25 μM 和 9.5 μM;当与吉非替尼联合使用时,Akti-1/2 会增强对细胞生长和细胞凋亡的抑制。 [4]
抑制人多能干细胞中AKT及下游GSK3β的磷酸化,对细胞存活至关重要 [3] |
体内研究 (In Vivo) |
Akti-1/2(50 mg/kg,腹腔注射)在基础水平和 IGF 刺激水平下抑制小鼠肺 Akt1 和 Akt2 磷酸化。对小鼠施用 AKT 抑制剂 VIII(50 mpk,3 剂,腹腔注射,每 90 分钟)达到 1.5–2.0 μM 的血浆浓度。然后将 IGF 静脉注射至动物尾静脉以促进 Akt 磷酸化。小鼠肺中 IP Western 会抑制基础和 IGF 刺激的 Akt1 和 Akt2 磷酸化,但 Akt3 磷酸化不受影响。
|
酶活实验 |
简而言之,96 孔格式的 Biomek 2000 实验室自动化工作站用于进行所有测定(25.5 μl,21°C,30 分钟)。添加 10 mM 醋酸镁和 5、20 或 50 μM ATP([γ-33P]-,800 cpm/pmol)可引发含有 5–20 mU 纯化激酶和底物蛋白或肽的反应。
|
细胞实验 |
使用 96 小时磺基罗丹明 B 测定 (SRB),可以确定 AKTi-1/2 如何抑制细胞生长。 GraphPad Prism 6.0 使用 S 形剂量反应(可变斜率)方程和非线性回归分析来计算每种化合物抑制 50% 细胞生长的药物浓度 (IC50)。
Western blot显示药物剂量依赖性降低p-AKT和p-GSK3β水平 [3] 乳腺癌细胞克隆形成实验提示抗增殖作用(未提供定量数据)[2] |
动物实验 |
C57BL/6 J mice
50 mg/kg i.p. Subcutaneous xenograft models established using breast cancer cell lines; drug formulation and administration frequency were not specified [2] |
参考文献 |
|
其他信息 |
This letter describes the development of two series of potent and selective allosteric Akt kinase inhibitors that display an unprecedented level of selectivity for either Akt1, Akt2 or both Akt1/Akt2. An iterative analog library synthesis approach quickly provided a highly selective Akt1/Akt2 inhibitor that induces apoptosis in tumor cells and inhibits Akt phosphorylation in vivo.[1]
Purpose: Previous studies have reported that the Curcuma wenyujin Y.H. Chen et C. Ling extract, which has a high furanodiene content, showed anti-cancer effects in breast cancer cells in vitro. The present study was designed to evaluate the in vitro and in vivo anti-cancer activity of furanodiene. Methods: The in vitro effects of furanodiene were examined on two human breast cancer cell lines, MCF-7 and MDA-MB-231 cells. Assays of proliferation, LDH release, mitochondrial membrane potential (ΔΨm), cell cycle distribution, apoptosis and relevant signaling pathways were performed. The in vivo effect was determined with MCF7 tumor xenograft model in nude mice. Results: Furanodiene significantly inhibited the proliferation and increased the LDH release in both cell lines in a dose-dependent manner. ΔΨm depolarization, chromatin condensation, and DNA fragmentation were also observed after furanodiene treatment. Furanodiene dose-dependently induced cell cycle arrest at the G0/G1 phase. The protein expressions of p-cyclin D1, total cyclin D1, p-CDK2, total CDK2, p-Rb, total Rb, Bcl-xL, and Akt were significantly inhibited by furanodiene, whereas the protein expressions of Bad and Bax, and the proteolytic cleavage of caspase-9, caspase-7, and poly-ADP-ribose polymerase (PARP) were dramatically increased. Furthermore, the z-VAD-fmk markedly reversed the furanodiene-induced cell cytotoxicity, the proteolytic cleavage of caspase-9, and DNA fragmentation but did not affect the proteolytic cleavage of PARP, whereas the Akt inhibitor VIII increased the furanodiene-induced cytotoxicity and PARP cleavage. In addition, furanodiene dose-dependently suppressed the tumor growth in vivo, achieving 32% and 54% inhibition rates after intraperitoneal injection of 15 mg/kg and 30 mg/kg, respectively. Conclusions: Taken together, we concluded that furanodiene suppresses breast cancer cell growth both in vitro and in vivo and could be a new lead compound for breast cancer chemotherapy.[2] Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival.[3] 3-[1-[[4-(7-phenyl-3H-imidazo[4,5-g]quinoxalin-6-yl)phenyl]methyl]-4-piperidinyl]-1H-benzimidazol-2-one is a member of piperidines. |
分子式 |
C34H29N7O
|
---|---|
分子量 |
551.6404
|
精确质量 |
551.243
|
元素分析 |
C, 74.03; H, 5.30; N, 17.77; O, 2.90
|
CAS号 |
612847-09-3
|
相关CAS号 |
PF-AKT400;1004990-28-6
|
PubChem CID |
135398501
|
外观&性状 |
Light yellow to yellow solid powder
|
密度 |
1.4±0.1 g/cm3
|
熔点 |
242-245ºC (dec.)
|
折射率 |
1.734
|
LogP |
5.1
|
tPSA |
95.49
|
氢键供体(HBD)数目 |
2
|
氢键受体(HBA)数目 |
5
|
可旋转键数目(RBC) |
5
|
重原子数目 |
42
|
分子复杂度/Complexity |
1270
|
定义原子立体中心数目 |
0
|
SMILES |
O=C1N([H])C2=C([H])C([H])=C([H])C([H])=C2N1C1([H])C([H])([H])C([H])([H])N(C([H])([H])C2C([H])=C([H])C(C3=C(C4C([H])=C([H])C([H])=C([H])C=4[H])N=C4C([H])=C5C(C([H])=C4N3[H])=NC([H])=N5)=C([H])C=2[H])C([H])([H])C1([H])[H]
|
InChi Key |
BIWGYFZAEWGBAL-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C34H29N7O/c42-34-39-26-8-4-5-9-31(26)41(34)25-14-16-40(17-15-25)20-22-10-12-24(13-11-22)33-32(23-6-2-1-3-7-23)37-29-18-27-28(36-21-35-27)19-30(29)38-33/h1-13,18-19,21,25H,14-17,20H2,(H,35,36)(H,39,42)
|
化学名 |
3-[1-[[4-(7-phenyl-3H-imidazo[4,5-g]quinoxalin-6-yl)phenyl]methyl]piperidin-4-yl]-1H-benzimidazol-2-one
|
别名 |
Sigma-A6730; AKT inhibitor VIII; AKT inhibitor-8; Akt inhibitor VIII; 612847-09-3; Akti-1/2; YX4CPQ6V6X; AKT-inhibitor-VIII; AKT-inhibitor-8; Akt-I 1,2; Akti-1/2
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: ~22 mg/mL (~39.9 mM)
Water: <1 mg/mL Ethanol: <1 mg/mL |
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2 mg/mL (3.63 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.0 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2 mg/mL (3.63 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 20.0 mg/mL 澄清 DMSO 储备液加入900 μL 玉米油中,混合均匀。 请根据您的实验动物和给药方式选择适当的溶解配方/方案: 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 1.8128 mL | 9.0639 mL | 18.1278 mL | |
5 mM | 0.3626 mL | 1.8128 mL | 3.6256 mL | |
10 mM | 0.1813 mL | 0.9064 mL | 1.8128 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Status | Interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00897663 | Completed | Genetic: microarray analysis Genetic: gene expression analysis |
Brain and Central Nervous System Tumors |
Alliance for Clinical Trials in Oncology |
November 2006 | Phase 3 |
NCT00671970 | Completed | Drug: Bevacizumab and Erlotinib |
Glioblastoma Gliosarcoma |
Duke University | February 2007 | Phase 2 |
![]() |