Sotorasib (AMG-510)

别名: AMG-510; sotorasib; AMG 510; AMG510; trade names: Lumakras; Lumykras; 商品名:LUMAKRAS;6-氟-7-(2-氟-6-羟基苯基)-1-(4-甲基-2-丙基-2-基吡啶-3-基)-4-[(2S)-2-甲基-4-丙-2-烯酰基哌嗪-1-基]吡啶并[2,3-d]嘧啶-2-酮; 索托拉西布
目录号: V3449 纯度: ≥98%
Sotorasib(AMG-510;AMG510;Lumakras;Lumykras)是一种新型、首创、共价/不可逆的 KRAS G12C 抑制剂,已于 2021 年 5 月 28 日获得 FDA 批准用于治疗非小细胞肺癌(非小细胞肺癌)。
Sotorasib (AMG-510) CAS号: 2296729-00-3
产品类别: Ras
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Sotorasib (AMG-510):

  • 索托拉西布消旋体
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

纯度: ≥98%

纯度: ≥98%

产品描述
Sotorasib(AMG-510;AMG510;Lumakras;Lumykras)是一种新型、一流、共价/不可逆的 KRAS G12C 抑制剂,已于 2021 年 5 月 28 日获得 FDA 批准用于治疗非小细胞肺癌(NSCLC)。它专门针对 KRAS G12C 突变,这是 Ras 蛋白 3 种亚型(KRas、NRas、HRas)中最常见的突变。 KRAS基因突变(例如G12C、G12V、G12D和G13D)存在于大约30%的人类癌症中,最常见于胰腺癌、肺腺癌、结直肠癌、胆囊癌、甲状腺癌和胆管癌。大约25%的NSCLC患者中也观察到KRAS突变,一些研究表明KRAS突变是NSCLC患者的负面预后因素。最近,V-Ki-ras2 Kirsten 大鼠肉瘤病毒癌基因同源物 (KRAS) 突变被发现可导致结直肠癌对表皮生长因子受体 (EGFR) 靶向治疗产生耐药性;因此,KRAS 的突变状态可以在开具 TKI 治疗处方之前提供重要信息。总而言之,对于胰腺癌、肺腺癌或结直肠癌患者,特别是那些被诊断患有以 KRAS 突变为特征的癌症的患者,包括化疗后病情进展的患者,需要新的医学治疗方法。
生物活性&实验参考方法
靶点
KRAS(G12C)
体外研究 (In Vitro)
在细胞测定中,Sotorasib (AMG-510) 共价修饰 KRAS G12C 并抑制 KRAS G12C 信号,通过所有 KRAS p.G12C 突变细胞系中的 ERK1/2 (p-ERK) 磷酸化来测量[2]。 Sotorasib (AMG-510;1-10 μM;72 小时) 对 NCI-H358 和 MIA PaCa-2 中的细胞活力也有效损害,IC50 分别为 0.006 μM 和 0.009 μM。非 KRASG12C 细胞系对 Sotorasib (IC50>7.5 μM细胞活力测定[3] 细胞系:NCI-H358 和 MIA PaCa-2 细胞 浓度:1-10 μM 孵育时间:72 小时 结果:NCI-H358 和 MIA PaCa 中的细胞活力明显受损-2(IC50分别约为0.006μM和0.009μM)。
体内研究 (In Vivo)
在临床前肿瘤模型中,Sotorasib (AMG-510) 快速且不可逆地结合 KRAS G12C,持久抑制丝裂原激活蛋白偶联 (MAPK) 信号放大器。Sotorasib (脸部;每天一次) 能够在 KRAS G12C 癌症模型中中诱导肿瘤消退[3]。
酶活实验
RAS激活突变是癌症最常见的致癌驱动突变。半胱氨酸在第12位取代甘氨酸的单个氨基酸(KRASG12C)在实体恶性肿瘤中很常见,特别是在肺腺癌(约13%)、结直肠腺癌(3%)和胰腺癌(约1%)中。最近已经证明,KRASG12C可以用共价小分子抑制剂靶向,这些抑制剂与开关II口袋(SIIP)附近的突变半胱氨酸反应,将KRAS锁定在其非活性的GDP结合状态。我们在这里描述了AMG 510的发现和体外表征,AMG 510是KRASG12C的共价抑制剂,具有强大的生化和细胞活性,以及强大的体内功效。AMG 510抑制了重组突变体KRASG12C/C118A的SOS1催化的核苷酸交换,但对KRASC118A的影响很小,KRASC118B是12位的野生型。AMG 510共价修饰KRASG12C的观察到的速率常数(kinact/Ki)通过质谱和细胞环境(kobs/[I])进行生化测定。用AMG 510处理的细胞的半胱氨酸蛋白质组分析表明,只有KRAS的含G12C的肽被共价修饰。AMG 510抑制了所有测试的KRAS p.G12C细胞系中通过ERK磷酸化测量的KRAS信号传导,但在缺乏KRAS p.G2C突变的细胞系中没有抑制ERK的磷酸化。通过质谱法测定AMG 510对KRASG12C的细胞占有率,并与ERK磷酸化的抑制密切相关。AMG 510还选择性地损害KRAS p.G12C突变系的存活率。AMG 510与其他细胞信号通路抑制剂的联合治疗显示出对细胞存活率的协同作用的证据。用共价KRASG12C抑制剂处理KRAS p.G12C系增加了HLA的表达。为了测试KRASG12C抑制对体内免疫监视的影响,我们产生了一种适用于检测AMG 510与检查点抑制剂联合治疗的同基因肿瘤细胞系,并在体外对该系进行了表征。AMG 510目前正在一项针对携带KRAS p.G12C突变的实体瘤患者的I期研究中进行评估[1]。
细胞实验
细胞系:NCI-H358 和 MIA PaCa-2 细胞
浓度:1-10 μM
孵育时间:72 小时
结果:NCI-H358 和 MIA PaCa-2 中的细胞活力均严重受损(IC50)分别约为 0.006 μM 和 0.009 μM)。
RAS家族成员的体细胞激活突变是估计21%的癌症中发现的肿瘤驱动突变。G12、G13和Q61残基的致癌KRAS突变是实体恶性肿瘤中最常见的RAS突变。KRAS p.G12C肿瘤的患病率约为肺腺癌(包括非小细胞肺癌)的13%,结直肠癌(CRC)的3%,以及许多其他实体瘤的1%-2%,这代表了未满足的医疗需求。我们开发了AMG 510,这是一种口服生物可利用的KRASG12C共价抑制剂,具有强大的生化和细胞活性,并具有强大的体内疗效。AMG 510抑制了重组突变体KRASG12C/C118A的SOS催化核苷酸交换,但对KRASC118A的影响很小,KRASC118B是12位的野生型。在细胞检测中,AMG 510共价修饰了KRASG12C,并在所有测试的KRAS p.G12C突变细胞系中通过ERK1/2(p-ERK)的磷酸化来抑制KRASG12B信号传导,但在具有各种其他KRAS突变的细胞系中没有抑制p-ERK。AMG 510还选择性地损害KRAS p.G12C突变细胞系的存活率,但不影响具有其他KRAS突变的细胞系[5]。
动物实验
Female ICR-SCID mice
100 mg/kg
o.g.
The RAS gene family encodes the small GTPase proteins NRAS, HRAS, and KRAS, which play an essential role in cellular growth and proliferation. KRAS is one of the most frequently mutated oncogenes in human cancer, with KRAS p.G12D, p.G12V, and p.G12C constituting the major mutational subtypes across lung, colon, and pancreatic cancers. Despite more than three decades of research, indirect approaches targeting KRAS mutant cancers have largely failed to show clinical benefit, and direct approaches have been stymied by the apparently ‘undruggable’ nature of KRAS. Cysteine-12 of KRASG12C has recently emerged as a unique vulnerability in KRAS-mutant cancers, and a small number of cysteine-reactive inhibitory tool molecules have been disclosed. We here report independent efforts to identify cysteine-reactive molecules capable of selectively inhibiting KRASG12C. Through iterative screening and structural biology efforts, we identified a novel Cys12-reactive inhibitor scaffold that derived its potency from occupancy of a previously unknown cryptic pocket induced by side-chain motion of the His95 residue of KRAS. Employing a scaffold-hopping approach, we leveraged knowledge of this cryptic pocket to design a series of N-aryl quinazolin-2(1H)-one-based inhibitors that demonstrated significantly enhanced potency relative to prior tool compounds. Extensive optimization of these leads led to the identification of a highly potent, selective, and well-tolerated inhibitor of KRASG12C, which was nominated for clinical development as AMG 510. In preclinical tumor models, AMG 510 rapidly and irreversibly binds to KRASG12C, providing durable suppression of the mitogen-activated protein kinase (MAPK) signaling pathway. Dosed orally (once daily) as a single agent, AMG 510 is capable of inducing tumor regression in mouse models of KRASG12C cancer. AMG 510 is, to the best of our knowledge, the first direct KRASG12C therapeutic to reach human clinical testing and is currently in a Phase I clinical trial evaluating safety, tolerability, PK, and efficacy in subjects with solid tumors bearing the KRAS p.G12C mutation (NCT03600883).
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
A 960 mg once daily dose of sotorasib reaches a Cmax of 7.50 µg/mL, with a median Tmax of 2.0 hours, and an AUC0-24h of 65.3 h\*µg/mL.
Sotorasib is 74% eliminated in the feces and 6% eliminated in the urine. 53% of the dose recovered in the feces and 1% of the dose recovered in the urine is in the form of the unchanged parent compound.
The volume of distribution of sotorasib is 211 L.
Sotorasib has an apparent clearance at steady state of 26.2 L/h.
Metabolism / Metabolites
Sotorasib is predominantly metabolized through conjugation or by CYP3As.
Biological Half-Life
Sotorasib has a terminal elimination half life of 5.5 ± 1.8 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In the prelicensure clinical trials of sotorasib in patients with solid tumors harboring KRAS G12C mutations, liver test abnormalities were frequent although usually self-limited and mild. Some degree of ALT elevations arose in 38% of sotorasib treated patients and were above 5 times the upper limit of normal (ULN) in 6% to 7%. In these trials that enrolled approximately 427 patients, sotorasib was discontinued early due to increased AST or ALT in 8% of patients. In addition, a small proportion of patients developed significant hepatotoxicity requiring sotorasib discontinuation and treatment with corticosteroids. The liver test abnormalities had a median onset of 9 weeks after initiation of therapy. While serum aminotransferase elevations were occasionally quite high (5 to 20 times upper limit of normal), there was no accompanying elevations in serum bilirubin and no patient developed clinically apparent liver injury with jaundice. The product label for sotorasib recommends monitoring for routine liver tests before, at 3 week intervals during the first 3 months of therapy, and monthly thereafter as clinically indicated.
Strikingly, the more severe elevations of serum aminotransferase levels during therapy with sotorasib occurred among patients who had recently received checkpoint inhibitor therapy (usually anti-PD-L1) in the 1 to 3 months before starting sotorasib. Furthermore, the elevations tended to respond quickly to corticosteroid therapy and sometimes did not recur when sotorasib was restarted several months later. These findings suggest that the aminotransferase elevations during sotorasib therapy are due to a delayed immune-mediated hepatotoxicity triggered by the previous checkpoint inhibitor therapy.
Likelihood score: D (possible but infrequent cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of sotorasib during breastfeeding. Because sotorasib is 89% bound to plasma proteins, the amount in milk is likely to be low. However, because of its potential toxicity in the breastfed infant, the manufacturer recommends that breastfeeding be discontinued during sotorasib therapy and for 1 week after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Sotorasib is 89% protein bound in plasma.
参考文献

[1]. Cancer Res (2019) 79 (13_Supplement): 4484.

[2]. Cancer Res (2019) 79 (13_Supplement): 4455.

[3]. Cancer Commun (Lond) . 2022 Aug;42(8):716-749.

[4]. Cancer Res Commun . 2022 May;2(5):342-352.

[5]. Cancer Res (2019) 79 (13_Supplement): 3090.

[6]. Nature. 2019 Nov;575(7781):217-223.

其他信息
Sotorasib is a pyridopyrimidine that is pyrido[2,3-d]pyrimidin-2(1H)-one substituted by 4-methyl-2-(propan-2-yl)pyridin-3-yl, (2S)-2-methyl-4-(prop-2-enoyl)piperazin-1-yl, fluoro and 2-fluoro-6-hydroxyphenyl groups at positions 1, 4, 6 and 7, respectively. It is approved for the treatment of patients with non-small cell lung cancer having KRAS(G12C) mutations. It has a role as an antineoplastic agent. It is a member of acrylamides, a N-acylpiperazine, a pyridopyrimidine, a member of monofluorobenzenes, a member of methylpyridines, a tertiary carboxamide, a tertiary amino compound and a member of phenols.
Sotorasib, also known as AMG-510, is an acrylamide-derived KRAS inhibitor developed by Amgen. It is indicated in the treatment of adult patients with KRAS G12C mutant non-small cell lung cancer. This mutation makes up >50% of all KRAS mutations. Mutant KRAS discovered in 1982 but was not considered a druggable target until the mid-2010s. It is the first experimental KRAS inhibitor. The drug [MRTX849] is also currently being developed and has the same target. Sotorasib was granted FDA approval on May 28, 2021, followed by the European Commission's approval on January 10, 2022.
Sotorasib is a small molecule inhibitor of the KRAS G12C mutant protein which is found in up to 13% of refractory cases of non-small cell lung cancer. Serum aminotransferase elevations are common during therapy with sotorasib, and a proportion of patients develop clinically apparent liver injury that can be severe.
Sotorasib is an orally available inhibitor of the specific KRAS mutation, p.G12C, with potential antineoplastic activity. Upon oral administration, sotorasib selectively targets, binds to and inhibits the activity of the KRAS p.G12C mutant. This may inhibit growth in KRAS p.G12C-expressing tumor cells. The KRAS p.G12C mutation is seen in some tumor cell types and plays a key role in tumor cell proliferation.
Drug Indication
Sotorasib is indicated in the treatment of KRAS G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC) in adults who have received at least one prior systemic therapy.
Lumykras as monotherapy is indicated for the treatment of adults with advanced non-small cell lung cancer (NSCLC) with KRAS G12C mutation and who have progressed after at least one prior line of systemic therapy.
Mechanism of Action
Normally GTP binds to KRAS, activating the protein and promoting effectors to the MAP kinase pathway. GTP is hydrolyzed to GDP, and KRAS is inactivated. KRAS G12C mutations impair hydrolysis of GTP, leaving it in the active form. Sotorasib binds to the cysteine residue in KRAS G12C mutations, holding the protein in its inactive form. The cysteine residue that sotorasib targets is not present in the wild type KRAS, which prevents off-target effects. This mutation is present in 13% of non small cell lung cancer, 3% of colorectal and appendix cancer, and 1-3% of solid tumors.
Pharmacodynamics
Sotorasib is indicated in the treatment of adults with KRAS G12C mutant non small cell lung cancer. It has a moderate duration of action as it is given daily. Patients should be counselled regarding the risks of hepatotoxicity, interstitial lung disease and pneumonitis; and to avoid breastfeeding during treatment and up to 1 week after the last dose.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C30H30F2N6O3
分子量
560.5944
精确质量
560.23
元素分析
C, 64.28; H, 5.39; F, 6.78; N, 14.99; O, 8.56
CAS号
2296729-00-3
相关CAS号
Sotorasib racemate; 2252403-56-6; Sotorasib isomer; Sotorasib-d7; 2296729-66-1; 2387559-45-5
PubChem CID
137278711
外观&性状
White to yellow solid powder
LogP
4
tPSA
102Ų
氢键供体(HBD)数目
1
氢键受体(HBA)数目
7
可旋转键数目(RBC)
5
重原子数目
41
分子复杂度/Complexity
1030
定义原子立体中心数目
1
SMILES
C[C@H]1CN(CCN1C2=NC(=O)N(C3=NC(=C(C=C32)F)C4=C(C=CC=C4F)O)C5=C(C=CN=C5C(C)C)C)C(=O)C=C
InChi Key
NXQKSXLFSAEQCZ-SFHVURJKSA-N
InChi Code
InChI=1S/C30H30F2N6O3/c1-6-23(40)36-12-13-37(18(5)15-36)28-19-14-21(32)26(24-20(31)8-7-9-22(24)39)34-29(19)38(30(41)35-28)27-17(4)10-11-33-25(27)16(2)3/h6-11,14,16,18,39H,1,12-13,15H2,2-5H3/t18-/m0/s1
化学名
6-fluoro-7-(2-fluoro-6-hydroxyphenyl)-1-(4-methyl-2-propan-2-ylpyridin-3-yl)-4-[(2S)-2-methyl-4-prop-2-enoylpiperazin-1-yl]pyrido[2,3-d]pyrimidin-2-one
别名
AMG-510; sotorasib; AMG 510; AMG510; trade names: Lumakras; Lumykras;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中(例如氮气保护),避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: 50~100 mg/mL (89.2~178.4 mM)
Ethanol: ~13 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.08 mg/mL (3.71 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 20.8 mg/mL澄清DMSO储备液加入400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.08 mg/mL (3.71 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.08 mg/mL (3.71 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 20.8 mg/mL 澄清 DMSO 储备液添加到 900 μL 玉米油中并混合均匀。


配方 4 中的溶解度: 5%DMSO+ 40%PEG300+ 5%Tween 80+ 50%ddH2O: 5.0mg/ml (8.92mM)

配方 5 中的溶解度: 10 mg/mL (17.84 mM) in 20% HP-β-CD in Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 1.7838 mL 8.9192 mL 17.8383 mL
5 mM 0.3568 mL 1.7838 mL 3.5677 mL
10 mM 0.1784 mL 0.8919 mL 1.7838 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
Study of Sotorasib, Panitumumab and FOLFIRI Versus FOLFIRI With or Without Bevacizumab-awwb in Treatment-naïve Participants With Metastatic Colorectal Cancer With KRAS p.G12C Mutation
CTID: NCT06252649
Phase: Phase 3    Status: Recruiting
Date: 2024-11-29
A Study Evaluating Sotorasib Platinum Doublet Combination Versus Pembrolizumab Platinum Doublet Combination as a Front-Line Therapy in Participants With Stage IV or Advanced Stage IIIB/C Nonsquamous Non-Small Cell Lung Cancers (CodeBreaK 202)
CTID: NCT05920356
Phase: Phase 3    Status: Recruiting
Date: 2024-11-29
Sotorasib Activity in Subjects With Advanced Solid Tumors With KRAS p.G12C Mutation (CodeBreak 101)
CTID: NCT04185883
Phase: Phase 1    Status: Recruiting
Date: 2024-11-29
A Study to Evaluate the Drug-drug Interaction Effect of Itraconazole on the Pharmacokinetics (PK) of AMG 510 in Healthy Participants
CTID: NCT05568082
Phase: Phase 1    Status: Completed
Date: 2024-11-21
A Study to Evaluate the Drug-drug Interaction Effect of Rifampin on the Pharmacokinetics of AMG 510 in Healthy Participants
CTID: NCT05577624
Phase: Phase 1    Status: Completed
Date: 2024-11-21
View More

Targeted Therapy Directed by Genetic Testing in Treating Patients With Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial
CTID: NCT05564377
Phase: Phase 2    Status: Recruiting
Date: 2024-11-21


AMG510 (sotorasib) Plus Lenvatinib As Second-line Treatment in Patients with KRASG12C Mutant, Metastatic NSCLC
CTID: NCT06068153
Phase: Phase 2    Status: Withdrawn
Date: 2024-11-20
Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targe
A Phase 3 Multicenter, Randomized, Open-label, Active-controlled Study of Sotorasib and Panitumumab Versus Investigator’s Choice (Trifluridine and Tipiracil, or Regorafenib) for the Treatment of Previously Treated Metastatic Colorectal Cancer Subjects with KRAS p.G12C Mutation
CTID: null
Phase: Phase 3    Status: Restarted, Trial now transitioned, Ongoing
Date: 2022-01-26
A Phase 2, Multicenter, Open-label Study of Sotorasib (AMG 510) in Subjects with Stage IV NSCLC Whose Tumors Harbor a KRASG12C Mutation in Need of First-line Treatment
CTID: null
Phase: Phase 2    Status: Ongoing, Temporarily Halted, Trial now transitioned, Prematurely Ended, Completed
Date: 2021-10-14
A Multicenter, Open-label, Single-arm, Expanded Access Protocol of AMG 510 (INN Sotorasib) for the Treatment of Subjects in Selected European Countries with Previously Treated Locally Advanced and Unresectable or Metastatic Non-small Cell Lung Cancer with KRAS p.G12C Mutation
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2021-05-18
A Phase 3 Multicenter, Randomized, Open Label, Active-controlled, Study of
CTID: null
Phase: Phase 3    Status: Trial now transitioned, Ongoing, GB - no longer in EU/EEA, Completed
Date: 2020-05-18
A Phase 1/2, Open-label Study Evaluating the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Efficacy of AMG 510 Monotherapy in Subjects With Advanced Solid Tumors With KRAS p.G12C Mutation and AMG 510 Combination Therapy in Subjects With Advanced NSCLC With KRAS p.G12C Mutation (CodeBreaK 100)
CTID: null
Phase: Phase 1, Phase 2    Status: Ongoing, Trial now transitioned, Temporarily Halted, Completed
Date: 2019-11-14

生物数据图片
相关产品
联系我们