BOC-D-FMK

别名: BOC-D-FMK; 634911-80-1; Caspase Inhibitor III; 3-[[(tert-Butoxy)carbonyl]amino]-5-fluoro-4-oxopentanoic acid methyl ester; methyl 5-fluoro-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxopentanoate; Caspase3-Inhibitor BOC-D-FMK; BOC-D-FMK?; C11H18FNO5; 3-[[(叔丁氧基)羰基]氨基]-5-氟-4-氧代戊酸甲酯; 3-[[叔丁氧羰基]氨基]-5-氟-4-氧代戊酸甲酯
目录号: V29824 纯度: ≥98%
Boc-D-FMK 是一种细胞渗透性、不可逆(共价)、广谱 caspase 抑制剂;抑制 TNF-α 刺激的细胞凋亡,IC50 为 39 µM。
BOC-D-FMK CAS号: 634911-80-1
产品类别: Caspase
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
Boc-D-FMK 是一种细胞渗透性、不可逆(共价)、广谱 caspase 抑制剂,可阻断 TNF 诱导的细胞凋亡,IC50 为 39 µM。
生物活性&实验参考方法
靶点
Caspase
体外研究 (In Vitro)
细胞凋亡是由称为半胱天冬酶的蛋白酶家族精心策划的细胞死亡途径。 TNFα 激活时会产生活性氧 (ROS),但 Boc-D-fmk 可以阻止这种情况发生。 Boc-D-FMK 的 IC50 为 39 µM[1],可阻断 TNFα 诱导的细胞凋亡。浓度为 50 µM 的 BocD-fmk 可阻止金雀异黄素诱导的 p815 细胞凋亡。根据共聚焦显微镜观察,线粒体凋亡因子的释放受到 BocD-fmk 的抑制 [2]。
体内研究 (In Vivo)
在胆管结扎大鼠中,Boc-D-FMK-fmk 显着减少肝细胞凋亡,并可能提高内毒素攻击后的存活率[3]。接受单次 Boc-D-FMK 注射后,MN 可以在 8 周以上的时间内长期免受根撕脱引起的死亡,并且 Boc-D-FMK 治疗的 MN 能够将轴突再生为 PN 移植物已植入并重新支配目标肌肉[4]。
酶活实验
在大多数细胞类型中,组成型和配体诱导的细胞凋亡是一个依赖caspase的过程。然而,在中性粒细胞中,广谱caspase抑制剂z-VAD-fmk增强肿瘤坏死因子α (TNF α)诱导的细胞死亡,这被解释为caspase依赖性和非依赖性细胞死亡途径的证据。我们的目的是确定z-VAD-fmk在中性粒细胞中作用的特异性,并确定其潜在的作用机制。虽然证实z-VAD-fmk(> 100微米)增强TNF α诱导的中性粒细胞凋亡,但较低浓度(1-30微米)完全阻断TNF α刺激的细胞凋亡。Boc-D-fmk是一种类似的广谱caspase抑制剂,z-IETD-fmk是一种选择性caspase-8抑制剂,它们只对TNF α刺激的细胞凋亡产生浓度依赖性抑制。此外,caspase-9抑制剂Ac-LEHD-cmk对TNF α诱导的细胞凋亡没有影响,z-VAD-fmk和Boc-D-fmk抑制TNF α刺激的活性氧(ROS)的产生。这些数据表明,TNF α诱导的中性粒细胞凋亡完全依赖于caspase,并使用线粒体独立途径,z-VAD-fmk的促凋亡作用是化合物特异性的,与ROS无关。[1]
细胞实验
在初步研究中,我们发现,与boc -天冬氨酸(OMe)-氟甲基酮(BocD-fmk)不同,在常规剂量下,苄基氧羰基-缬氨酸- α -asp (OMe)-氟甲基酮(zVAD- fmk)不能阻止染料木黄酮诱导的p815乳母细胞瘤细胞凋亡。本研究旨在揭示zvd -fmk无法阻止这种类型细胞凋亡的机制。我们观察到染料木素处理的细胞14-3-3蛋白水平降低,BocD-fmk而不是zVAD-fmk阻止14-3-3蛋白水平的降低和Bad的释放。我们还证明,在染料木黄酮处理的细胞中,BocD-fmk可以阻止截断的Bad与Bcl-xL的相互作用,而zVAD-fmk则不能。我们的数据表明,与zVAD-fmk相比,BocD- fmk对14-3-3/Bad信号通路具有一定的抑制偏好。我们还阐明了BocD-fmk和zVAD-fmk的这种差异功效是由于抑制caspase-6的效果不同,并且zvd -fmk和caspase-6特异性抑制剂共同处理实质上阻止了染料木黄酮诱导的细胞凋亡。我们的数据显示,caspase-6在染料木黄酮诱导的p815细胞凋亡的Bad/14-3-3通路中发挥作用,并且与BocD-fmk相比,通常剂量的zVAD-fmk不能阻止caspase-6作用于14-3-3/Bad介导的事件。[2]
动物实验
Male Sprague-Dawley rats, weighing 280-300 g were randomized to three groups of eight rats each. Group 1 (OBBOC-D) underwent common bile duct ligation and simultaneous treatment with Boc-D-FMK-fmk (dissolved in dimethylsulfoxide [DMSO]). Group 2 (OBZFA) underwent common bile duct ligation and simultaneous treatment with ZFA-fmk (dissolved in DMSO). Group 3 (SHAM) underwent sham operation and simultaneous treatment with the same amount of dimethylsulfoxide (DMSO, n = 4) or the same amount of normal saline (n = 4). After 3 days, liver tissue was harvested for histopathological analysis and measurements of apoptosis. Survival rates were measured in a separate experiment in which animals underwent the same protocol. The animals received endotoxin (15 mg/kg) in the afternoon of the third postoperative day. Animals were observed for 48 h and the survival rates were recorded. Results: When compared with sham operation, common bile duct ligation with ZFA-fmk (placebo) significantly increased hepatocyte apoptosis (P < 0.001). When compared with the OBZFA group, Boc-D-FMK significantly diminished the increased hepatocyte apoptosis in the OBBOC-D group (P < 0.001). There is no difference in hepatocyte apoptosis (P = 0.05) between OBBOC-D and SHAM groups. After endotoxin challenge, the 48 h survival rates were 100%, 87.5% and 62.5% for the SHAM, OBBOC-D and OBZFA groups, respectively. Conclusions: Boc-D-FMK-fmk effectively attenuated the hepatocyte apoptosis in bile duct-ligated rats and may improve the survival rates after endotoxin challenge.[3]
We examined whether (1) a pan-caspase inhibitor, Boc-D-FMK, exerts long-term neuroprotective effects on spinal motoneurons (MNs) after root avulsion in neonatal rats and (2) whether the rescued spinal MNs regenerate their axons into a peripheral nerve (PN) graft and reinnervate a previously denervated target muscle. Eight weeks after root avulsion, 67% of spinal MNs remained in the Boc-D-FMK-treated group, whereas all MNs died in the sham control group. By 12 weeks postinjury, however, all Boc-D-FMK treated MNs died. In the regeneration experiment, a PN graft was implanted at different times after injury. The animals were allowed to survive for 4 weeks following the operation. Without caspase inhibition, MNs did not regenerate at any time point. In animals treated with Ac-DEVD-CHO, a caspase-3-specific inhibitor, and Boc-D-FMK, 44 and 62% of MNs, respectively, were found to regenerate their axons into a PN graft implanted immediately after root avulsion. When the PN graft was implanted 2 weeks after injury, however, MNs failed to regenerate following Ac-DEVD-CHO treatment, whereas 53% of MNs regenerated their axons into the graft after treatment with Boc-D-FMK. No regeneration was observed when a PN graft was implanted later than 2 weeks after injury. In the reinnervation study, injured MNs and the target biceps muscle were reconnected by a PN bridge implanted 2 weeks after root avulsion with administration of Boc-D-FMK. Eight weeks following the operation, 39% of MNs reinnervated the biceps muscle. Morphologically normal synapses and motor endplates were reformed in the muscle fibers. Collectively, these data provide evidence that injured neonatal motoneurons can survive and reinnervate peripheral muscle targets following inhibition of caspases.[4]
参考文献

[1]. z-VAD-fmk augmentation of TNF alpha-stimulated neutrophil apoptosis is compound specific and does not involve the generation of reactive oxygen species.

[2]. zVAD-fmk, unlike BocD-fmk, does not inhibit caspase-6 acting on 14-3-3/Bad pathway in apoptosis of p815 mastocytoma cells. Exp Mol Med. 2006 Dec 31;38(6):634-42.

[3]. Effect of Boc-D-Fmk on hepatocyte apoptosis after bile duct ligation in rat and survival rate after endotoxin challenge. J Gastroenterol Hepatol. 2008 Aug;23(8 Pt 1):1276-9.

[4]. Inhibition of caspases promotes long-term survival and reinnervation by axotomized spinal motoneurons of denervated muscle in newborn rats. Exp Neurol. 2003 Jun;181(2):190-203.

其他信息
Surgical procedures[4]
On the day of birth, newborn female Spraque–Dawley rats were anesthetized under deep hypothermia. Under a surgical microscope, a dorsal laminectomy was carried out and the spinal root of the seventh cervical (C7) segment was identified. The C7 ventral root together with the dorsal root were avulsed by a pair of microhemostatic forceps. To study the long-term neuroprotective effect of Boc-D-FMK, animals were divided into two groups. There were six rats in each group at each time point. The first...

Long-term neuroprotective effect of Boc-D-FMK[4]
Motoneurons were identified and counted as described previously (Clarke and Oppenheim, 1995). In brief, only MNs with a large nucleus containing clearly visible nucleoli and a largely distinct cytoplasm were counted. Because the number of MNs on the contralateral intact side of the experimental animals was not significantly different from normal control animals (data not shown), the contralateral side served as an internal control. We have previously reported that by 7 days postlesion, there...

Discussion[4]
The present results indicate that caspases play a key role in the death of spinal MNs after injury in neonates. Inhibition of caspases led to long-term neuroprotection as well as axonal regeneration of avulsed spinal MNs. With a PN bridge between the spinal cord and the denervated muscle target, the caspase inhibitor-treated MNs were able to reinnervate the neuromuscular junction and muscular atrophy was reduced. These results suggest that the inhibition of caspases may be a potent strategy for ...

Conclusion[4]
The experiments presented here provide evidence that following root avulsion, neonatal spinal MNs can survive and reinnervate target muscle if appropriate treatment is provided. A single injection of Boc-D-FMK results in long-term protection of MNs against root avulsion-induced death for more than 8 weeks and the Boc-D-FMK-treated MNs are able to regenerate their axons into an implanted PN graft and reinnervate the target muscle. Taken together, these data suggest that local administration of...
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C11H18FNO5
分子量
263.26272726059
精确质量
263.12
元素分析
C, 50.19; H, 6.89; F, 7.22; N, 5.32; O, 30.39
CAS号
634911-80-1
相关CAS号
634911-80-1
PubChem CID
16760348
序列
Boc-DL-Asp(OMe)-CH2F
外观&性状
Solid if <31.2°C; Liquid if >31.2°C; Light yellow to yellow color
密度
1.150
LogP
0.9
tPSA
81.7Ų
氢键供体(HBD)数目
1
氢键受体(HBA)数目
6
可旋转键数目(RBC)
8
重原子数目
18
分子复杂度/Complexity
324
定义原子立体中心数目
0
SMILES
FCC(C(CC(=O)OC)NC(=O)OC(C)(C)C)=O
InChi Key
MXOOUCRHWJYCAL-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H18FNO5/c1-11(2,3)18-10(16)13-7(8(14)6-12)5-9(15)17-4/h7H,5-6H2,1-4H3,(H,13,16)
化学名
methyl 5-fluoro-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxopentanoate
别名
BOC-D-FMK; 634911-80-1; Caspase Inhibitor III; 3-[[(tert-Butoxy)carbonyl]amino]-5-fluoro-4-oxopentanoic acid methyl ester; methyl 5-fluoro-3-[(2-methylpropan-2-yl)oxycarbonylamino]-4-oxopentanoate; Caspase3-Inhibitor BOC-D-FMK; BOC-D-FMK?; C11H18FNO5;
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO: ~100 mg/mL (~379.9 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (9.50 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (9.50 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (9.50 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 3.7985 mL 18.9926 mL 37.9853 mL
5 mM 0.7597 mL 3.7985 mL 7.5971 mL
10 mM 0.3799 mL 1.8993 mL 3.7985 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
联系我们