规格 | 价格 | 库存 | 数量 |
---|---|---|---|
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
靶点 |
5-HT2 Receptor
|
||
---|---|---|---|
体外研究 (In Vitro) |
体外活性:Cyproheptadine 是一种血清素和组胺拮抗剂以及抗毒蕈碱试剂。它用于治疗胃切除术后倾倒综合征、瘙痒性皮肤病、偏头痛、厌食症和垂体依赖性库欣综合征。赛庚啶的主要尿产物是赛庚啶葡萄糖醛酸,一种季铵化合物。赛庚啶有一些副作用,包括镇静、嗜睡、低血压、心动过速和血液恶液质。
|
||
体内研究 (In Vivo) |
赛庚啶是一种 5-HT2A 受体拮抗剂,被发现可在体外和离体逆转血清素增强的 ADP 诱导的血小板聚集,表明其具有抗血小板和血栓保护作用。
|
||
动物实验 |
|
||
药代性质 (ADME/PK) |
Absorption, Distribution and Excretion
A single study examining the difference in absorption of orally administered versus sublingually administered cyproheptadine in five healthy males demonstrated a mean Cmax of 30.0 mcg/L and 4.0 mcg/L, respectively, and a mean AUC of 209 mcg.h/L and 25 mcg.h/L, respectively. The Tmax of orally and sublingually administered cyproheptadine was 4 hours and 9.6 hours, respectively. Approximately 2-20% of the radioactivity from an orally administered radio-labeled dose of cyproheptadine is excreted in the feces, of which approximately 34% is unchanged parent drug (less than 5.7% of the total dose). At least 40% of radioactivity is recovered in the urine. H1 antagonists are eliminated more rapidly by children than by adults and more slowly in those with severe liver disease. /H1 Receptor Antagonists/ The H1 antagonists are well absorbed from the gastrointestinal tract. Following oral administration, peak plasma concentrations are achieved in 2 to 3 hours ... . /H1 Receptor Antagonists/ To investigate the pharmacokinetics of cyproheptadine (CPH) and its metabolites, the plasma concn and urinary excretion of CPH and its detectable metabolites were determined after iv admin of parent or synthesized metabolites to rats. The plasma CPH concn time course was subjected to biexponential calculation following the iv admin of CPH, producing the temporal and low plasma concn of desmethylcyproheptadine (DMCPH) and the sustained plasma concn of desmethylcyproheptadine epoxide (DMCPHepo). DMCPH was also eliminated according to the biexponential equation, after iv admin of performed DMCPH, forming DMCPHepo in plasma. On the other hand, no detectable DMCPHepo was found in plasma after the iv admin of cyproheptadine epoxide (CPHepo). All cmpd administered had large distribution volumes and were most entirely excreted as DMCPHepo in urine; this excretion continued for a long time. However, the urinary excretion pattern of DMCPHepo after CPHepo was different from those after CPH and MCPH. The mean residence times of the epoxidized metabolites estimated from the urinary data were much longer than those from the plasma concn data, suggesting either a gradual reflux of the metabolites from a tissue depot into systemic circulation under those plasma concn close of detection limit, or one interaction which delays excretion into the urine. This study suggests that both metabolic pathways of CPH, through DMCPH nd CPHepo, to DMCPHepo are possible, but that the demethylation largely occurs prior to epoxidation; also that the extensive and persistent distribution of DMCPHepo to tissues may relate to the toxicity of CPH reported in rats. Twelve diphenhydramine and cyproheptadine derivatives were synthesized and screened for Hl-receptor antagonist activity at the isolated guinea pig ileum and for H2-receptor antagonist activity at the isolated guinea pig right atrium. The cmpd showed high Hl- and H2-receptor antagonist activity. The incorporation of the diphenhydramine and cyproheptadine components provided high affinity to Hl-receptors. All compounds elicited a dual mode of competitive and noncompetitive antagonism. The nitroethenediamines with 4-fluoro-4-methyl-substituted diphenhydramine as the Hl-receptor antagonist moiety displayed the most potent Hl- and H2-receptor antagonist effects. The blood brain barrier transport system for Hl-antagonists was studied using primary cultured bovine brain capillary endothelial cells to study the effects of five H1-antagonists (azelastine, ketotifen, cyproheptadine, emedastine, and cetirizine) on the uptake of radiolabeled mepyramine (pyrilamine). The uptake of mepyramine was inhibited by various H1-antagonists. Ketotifen competitively inhibited mepyramine uptake, and lipophilic basic drugs significantly inhibited mepyramine uptake. The results indicated that H1-antagonists are transported across the blood brain barrier via a carrier mediated transport system common to lipophilic basic drugs. Metabolism / Metabolites The principal metabolite found in human urine has been identified as a quaternary ammonium glucuronide conjugate of cyproheptadine. In humans, the metabolism of a number of tertiary amine containing pharmacological agents to quaternary ammonium linked glucuronides, catalyzed by UDP-glucuronosyltransferase (UGT), represents a unique and important metabolic pathway for these compounds. A full length cDNA encoding human UGTl.4 (the so-called minor human bilirubin UGT) was inserted into the expression vector pREP9 and transfected into human embryonic kidney 293 cells, and stable transfectants were obtained after geneticin selection. As expected, the expressed protein had low catalytic activity toward bilirubin. However, expressed human UGTl.4 protein exhibited glucuronidation activity toward tertiary amine substrates, such as imipramine, cyproheptadine, tripelennamine, and chlorpromazine, which form quaternary ammonium linked glucuronides. Carcinogenic primary amines (beta-naphthylamine, benzidine, and 4-aminobiphenyl) also reacted with the expressed UGTl.4 protein at rates approximately 10-fold higher than the rates for quaternary ammonium glucuronide formation. Although a number of other UGT gene products are capable of catalyzing the glucuronidation of primary amine substrates, expressed human UGTl.4 protein is the only UGT isoform that has been shown to conjugate tertiary amine substrates, forming quaternary ammonium linked glucuronides. Cyproheptadine has known human metabolites that include Cyproheptadine N-glucuronide. Hepatic (cytochrome P-450 system) and some renal. Route of Elimination: After a single 4 mg oral dose of14C-labelled cyproheptadine HCl in normal subjects, given as tablets 2% to 20% of the radioactivity was excreted in the stools. At least 40% of the administered radioactivity was excreted in the urine. |
||
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Summary
Cyproheptadine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. Cyproheptadine also competes with serotonin at receptor sites in smooth muscle in the intestines and other locations. Antagonism of serotonin on the appetite center of the hypothalamus may account for Cyproheptadine's ability to stimulate appetite. Hepatotoxicity Unlike most first generation antihistamines, cyproheptadine has been associated with several instances of clinically apparent liver injury. The few cases that have been described had a time to onset of 1 to 6 weeks and a cholestatic or mixed pattern of liver enzyme elevations. Immunoallergic and autoimmune features were not present and most patients recovered rapidly without residual. Acute liver failure due to cyproheptadine has not been described. Likelihood score: C (probable rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Unless it is intentionally being used to lower maternal serum prolactin levels, cyproheptadine should be avoided during lactation because it may interfere with lactation, particularly in combination with a sympathomimetic such as pseudoephedrine or before lactation is well established. The nonsedating antihistamines are preferred alternatives. ◉ Effects in Breastfed Infants Relevant published information on cyproheptadine was not found as of the revision date. In one telephone follow-up study, mothers reported irritability and colicky symptoms 10% of infants exposed to various antihistamines and drowsiness was reported in 1.6% of infants. None of the reactions required medical attention and none of the infants were exposed to cyproheptadine. ◉ Effects on Lactation and Breastmilk Cyproheptadine 16 to 24 mg daily lowers serum prolactin in the treatment of amenorrhea-galactorrhea syndrome because of its antiserotonin activity. Additionally, antihistamines in relatively high doses given by injection can decrease basal serum prolactin in nonlactating women and in early postpartum women. However, suckling-induced prolactin secretion is not affected by antihistamine pretreatment of postpartum mothers. Whether lower oral doses of cyproheptadine has the same effect on serum prolactin or whether the effects on prolactin have any consequences on breastfeeding success have not been studied. The prolactin level in a mother with established lactation may not affect her ability to breastfeed. Interactions Concurrent use may potentiate the CNS depressant effects of either these medications /alcohol or other CNS depression-producing medications/ or antihistamines; also, concurrent use of maprotiline or tricyclic antidepressants may potentiate the anticholinergic effects of either antihistamines or these medications. /Antihistamines/ Anticholinergic effects may be potentiated when these medications /anticholinergics or other medications with anticholinergic activity/ are used concurrently with antihistamines; patients should be advised to report occurrence of gastrointestinal problems promptly since paralytic ileus may occur with concurrent therapy. /Antihistamines/ Concurrent use of monoamine oxidase (MAO) inhibitors with antihistamines may prolong the intensify the anticholinergic and CNS depressant effects of antihistamines; concurrent use is not recommended. /Antihistamines/ Concurrent use /of ototoxic medications/ with antihistamines may mask the symptoms of ototoxicity such as tinnitus, dizziness, or vertigo. /Antihistamines/ For more Interactions (Complete) data for CYPROHEPTADINE (12 total), please visit the HSDB record page. |
||
参考文献 | |||
其他信息 |
Cyproheptadine is the product resulting from the formal oxidative coupling of position 5 of 5H-dibenzo[a,d]cycloheptene with position 4 of 1-methylpiperidine resulting in the formation of a double bond between the two fragments. It is a sedating antihistamine with antimuscarinic and calcium-channel blocking actions. It is used (particularly as the hydrochloride sesquihydrate) for the relief of allergic conditions including rhinitis, conjunctivitis due to inhalant allergens and foods, urticaria and angioedema, and in pruritic skin disorders. Unlike other antihistamines, it is also a seratonin receptor antagonist, making it useful in conditions such as vascular headache and anorexia. It has a role as a H1-receptor antagonist, a serotonergic antagonist, an antipruritic drug, an anti-allergic agent and a gastrointestinal drug. It is a member of piperidines and a tertiary amine.
Cyproheptadine is a potent competitive antagonist of both serotonin and histamine receptors. It is used primarily to treat allergic symptoms, though it is perhaps more notable for its use in appetite stimulation and its off-label use in the treatment of serotonin syndrome. Cyproheptadine is a first generation antihistamine used in the treatment of allergic rhinitis and urticaria and as an appetite stimulant. Cyproheptadine has been linked to rare instances of clinically apparent liver injury. Cyproheptadine is only found in individuals that have used or taken this drug. It is a serotonin antagonist and a histamine H1 blocker used as antipruritic, appetite stimulant, antiallergic, and for the post-gastrectomy dumping syndrome, etc. Cyproheptadine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. Cyproheptadine also competes with serotonin at receptor sites in smooth muscle in the intestines and other locations. Antagonism of serotonin on the appetite center of the hypothalamus may account for Cyproheptadine's ability to stimulate appetite. A serotonin antagonist and a histamine H1 blocker used as antipruritic, appetite stimulant, antiallergic, and for the post-gastrectomy dumping syndrome, etc. See also: Cyproheptadine Hydrochloride (has salt form). Drug Indication In the US, prescription cyproheptadine is indicated for the treatment of various allergic symptomatologies - including dermatographia, rhinitis, conjunctivitis, and urticaria - as well as adjunctive therapy in the management of anaphylaxis following treatment with epinephrine. In Canada, cyproheptadine is available over-the-counter and is indicated for the treatment of pruritus and for appetite stimulation. In Australia, cyproheptadine is additionally indicated for the treatment vascular headaches. Cyproheptadine is also used off-label for the treatment of serotonin syndrome. Mechanism of Action Cyproheptadine appears to exert its antihistamine and antiserotonin effects by competing with free histamine and serotonin for binding at their respective receptors. Antagonism of serotonin on the appetite center of the hypothalamus may account for cyproheptadine's ability to stimulate the appetite. CYPROHEPTADINE...IS A SEROTONIN & HISTAMINE ANTAGONIST... ... It is an effective H1 blocker. Cyproheptadine also has prominent 5-H blocking activity on smooth muscle by virtue of its binding to 5-HT2A receptors. ... It has weak anticholinergic activity and possess mild central depressant properties. Therapeutic Uses Anti-Allergic Agents; Antipruritics; Gastrointestinal Agents; Histamine H1 Antagonists; Serotonin Antagonists IT IS EFFECTIVE FOR...PREVENTION OF REACTIONS TO BLOOD OR PLASMA IN PT WITH KNOWN HISTORY OF SUCH REACTIONS, DERMOGRAPHISM, & AS THERAPY FOR ANAPHYLACTIC REACTIONS ADJUNCTIVE TO EPINEPHRINE & OTHER STANDARD MEASURES AFTER ACUTE MANIFESTATIONS HAVE BEEN CONTROLLED. /HCL/ IT IS PROBABLY EFFECTIVE IN MILD, LOCAL REACTIONS TO INSECT BITES, PHYSICAL ALLERGY, & MINOR DRUG & SERUM REACTIONS CHARACTERIZED BY PRURITUS. IT IS POSSIBLY EFFECTIVE IN PRURITUS OF...CONTACT DERMATITIS & PRURITUS OF CHICKEN POX. /HCL/ CYPROHEPTADINE...HAS BEEN REPORTED TO BE EFFECTIVE IN SOME PATIENTS /IN THE PROPHYLAXIS OF MIGRAINE/, BUT RESULTS OF CONTROLLED STUDIES HAVE DEMONSTRATED THAT IT IS ONLY SLIGHTLY BETTER THAN A PLACEBO. For more Therapeutic Uses (Complete) data for CYPROHEPTADINE (16 total), please visit the HSDB record page. Drug Warnings PERSONS TAKING ANTIHISTAMINES SHOULD BE ALERTED TO THEIR SEDATIVE EFFECTS & SHOULD BE CAUTIONED NOT TO DRIVE AN AUTOMOBILE, FLY AN AIRPLANE, OR OPERATE HAZARDOUS MACHINERY WHILE ON SUCH MEDICATION. /ANTIHISTAMINES/ Potential Adverse Effects On Fetus: No problems in animal studies. Controlled studies not done in humans. Potential Side Effects On Breast-Fed Infant: Not known if secreted. FDA Category: B (B = Studies in laboratory animals have not demonstrated a fetal risk, but there are no controlled studies in pregnant women; or animal studies have shown an adverse effect (other than a decrease in fertility), but controlled studies in pregnant women have not demonstrated a risk to the fetus in the first trimester and there is no evidence of a risk in later trimesters.) /from Table II/ Side effects of cyproheptadine include those common to other H1 antagonist, such as drowsiness. Weight gain and increased growth in children have been observed and been attributed to an interference with regulation of the secretion growth hormone. Small amounts of antihistamines are distributed into breast milk; use is not recommended in nursing mothers because of the risk of adverse effects, such as unusual excitement or irritability, in infants. /Antihistamines/ For more Drug Warnings (Complete) data for CYPROHEPTADINE (8 total), please visit the HSDB record page. Pharmacodynamics Cyproheptadine has been observed to antagonize several pharmacodynamic effects of serotonin in laboratory animals, including bronchoconstriction and vasodepression, and has demonstrated similar efficacy in antagonizing histamine-mediated effects. The reason for its efficacy in preventing anaphylactic shock has not been elucidated, but appears to be related to its anti-serotonergic effects. |
分子式 |
C21H22CLN
|
|
---|---|---|
分子量 |
323.86
|
|
精确质量 |
323.144
|
|
CAS号 |
969-33-5
|
|
相关CAS号 |
Cyproheptadine hydrochloride sesquihydrate; 41354-29-4; Cyproheptadine; 129-03-3
|
|
PubChem CID |
2913
|
|
外观&性状 |
White to off-white solid powder
|
|
沸点 |
440.1ºC at 760mmHg
|
|
熔点 |
112.3-113.3
112.3-113.3 °C 215 - 217 °C |
|
闪点 |
194.5ºC
|
|
LogP |
5.437
|
|
tPSA |
3.24
|
|
氢键供体(HBD)数目 |
0
|
|
氢键受体(HBA)数目 |
1
|
|
可旋转键数目(RBC) |
0
|
|
重原子数目 |
22
|
|
分子复杂度/Complexity |
423
|
|
定义原子立体中心数目 |
0
|
|
SMILES |
C1C=CC=C2/C(=C3\CCN(C)CC\3)/C3=CC=CC=C3C=CC=12.Cl
|
|
InChi Key |
ZPMVNZLARAEGHB-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C21H21N.ClH/c1-22-14-12-18(13-15-22)21-19-8-4-2-6-16(19)10-11-17-7-3-5-9-20(17)21;/h2-11H,12-15H2,1H3;1H
|
|
化学名 |
1-methyl-4-(2-tricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,9,11,13-heptaenylidene)piperidine;hydrochloride
|
|
别名 |
|
|
HS Tariff Code |
2934.99.9001
|
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month 注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。 |
|
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (7.72 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (7.72 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (7.72 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0878 mL | 15.4388 mL | 30.8775 mL | |
5 mM | 0.6176 mL | 3.0878 mL | 6.1755 mL | |
10 mM | 0.3088 mL | 1.5439 mL | 3.0878 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT02418949 | Active Recruiting |
Drug: Placebo for Cyproheptadine Drug: Cyproheptadine |
Stroke Hemiparesis Muscle Spasticity |
Shirley Ryan AbilityLab | November 2015 | Not Applicable |
NCT06175273 | Not yet recruiting | Drug: Cyproheptadine Drug: Dronabinol Other: Standard of Care |
Pediatric Cancer Muscle Loss Malnutrition, Child |
Corey Hawes | January 2024 | Phase 2 Phase 3 |
NCT05469165 | Recruiting | Drug: Cyproheptadine 4 Mg Oral Tablet Other: Placebo |
Ischemic Mitral Regurgitation | Laval University | June 20, 2023 | Phase 2 |
NCT06147622 | Not yet recruiting | Drug: Prazosin + cyproheptadine Drug: KT110 |
Alcohol Use Disorder | Kinnov Therapeutics | February 2024 | Phase 1 |
NCT00066248 | Completed | Drug: cyproheptadine hydrochloride Drug: megestrol acetate |
Brain Tumor Cachexia Leukemia Lymphoma |
University of South Florida | June 2003 | Phase 2 |