规格 | 价格 | 库存 | 数量 |
---|---|---|---|
25g |
|
||
Other Sizes |
|
毒性/毒理 (Toxicokinetics/TK) |
Toxicity Data
LC50 (rat) = 159 mg/m3/6h Non-Human Toxicity Values LD50 Rat oral 400 mg/kg LC50 Rat inhalation 159 mg/cu m/6 hr LD50 Rat intraperitoneal 10 mg/kg LD50 Mouse intraperitoneal >800 mg/kg For more Non-Human Toxicity Values (Complete) data for Dicyclohexylcarbodiimide (6 total), please visit the HSDB record page. |
---|---|
其他信息 |
N,n'-dicyclohexylcarbodiimide is a white crystalline solid with a heavy sweet odor. (NTP, 1992)
1,3-dicyclohexylcarbodiimide is a carbodiimide compound having a cyclohexyl substituent on both nitrogen atoms. It has a role as a peptide coupling reagent, an ATP synthase inhibitor and a cross-linking reagent. A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed) Mechanism of Action The molecular mechanism of the electroneutral organic cation/H+ antiporter in renal brush border membrane vesicles was studied utilizing the prototypic organic cation N1-methylnicotinamide. The hydrophobic carbodiimide, N,N'-dicyclohexylcarbodiimide (DCCD), inactivated organic cation transport irreversibly with an IC50 of 2.6 microM at pH 7.5 and 40 nM at pH 6.0. On the other hand, the hydrophilic reagents, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, did not affect organic cation transport. Substrate did not affect the rate of the DCCD inactivation which followed pseudo-first-order-kinetics. A double logarithmic plot of the apparent rate constants vs. the DCCD concentration gave a straight line with a slope of 0.8. The data are consistent with a simple bimolecular reaction mechanism and imply that one molecule of DCCD inactivates one carboxylate group per active transport unit and that the carboxylate group is critical for transport. The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys. Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. ... A spontaneous mutant of Methanothermobacter thermautotrophicus resistant toward the ATP-synthase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was isolated. DCCD normally inhibits methanogenic electron-transport-driven ATP synthesis, however, the DCCD-resistant strain exhibited methanogenesis in the presence of 300 micromol/L DCCD. Total ATP synthesis was shown to be higher in the mutant strain, both in the presence and absence of DCCD. These results suggested a modification in the ATP-synthesizing system of the mutant strain. Using Blue Native PAGE combined with MALDI TOF/TOF mass spectrometry, increased concentrations of both the A(1) and A(o) subcomplexes of the A(1)A(o)-type synthase were identified in the mutant strain. However, no alterations were found in the structural genes (atp) for the A(1)A(o) ATP synthase. The results imply that DCCD resistance is a consequence of increased A(1)A(o) ATP synthase expression, and suggest that genes involved in regulating synthase expression are responsible for DCCD resistance. |
分子式 |
C13H22N2
|
---|---|
分子量 |
206.3272
|
精确质量 |
206.178
|
CAS号 |
538-75-0
|
PubChem CID |
10868
|
外观&性状 |
Colorless to off-white <34°C powder,>35°C liquid
|
密度 |
1.325
|
沸点 |
122-124 ºC (6 torr)
|
熔点 |
34-35 °C(lit.)
|
闪点 |
87 ºC
|
蒸汽压 |
0.0±0.5 mmHg at 25°C
|
折射率 |
1.567
|
LogP |
5.54
|
tPSA |
24.72
|
氢键供体(HBD)数目 |
0
|
氢键受体(HBA)数目 |
2
|
可旋转键数目(RBC) |
2
|
重原子数目 |
15
|
分子复杂度/Complexity |
201
|
定义原子立体中心数目 |
0
|
SMILES |
N(=C=NC1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H])C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H]
|
InChi Key |
QOSSAOTZNIDXMA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C13H22N2/c1-3-7-12(8-4-1)14-11-15-13-9-5-2-6-10-13/h12-13H,1-10H2
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO : ~100 mg/mL (~484.66 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (12.12 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (12.12 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (12.12 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 4.8466 mL | 24.2330 mL | 48.4660 mL | |
5 mM | 0.9693 mL | 4.8466 mL | 9.6932 mL | |
10 mM | 0.4847 mL | 2.4233 mL | 4.8466 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。