规格 | 价格 | 库存 | 数量 |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
靶点 |
Eukaryotic initiation factor 4A (eIF4A)
|
---|---|
体外研究 (In Vitro) |
Didesmethylrocaglamide (5 nM and 10 nM; 72 hours; MPNST cells) treatment arrests MPNST cells at G2-M, increases the sub-G1 population, induces caspase and PARP cleavage, and elevates DNA-damage response marker γH2A.X levels while lowering the expression of AKT and ERK1/2[1].
Didesmethylrocaglamide causes cell cycle arrest at G2/M, which leads to cell death, and thereby reduces MPNST cell proliferation. 697-R cells treated with didesmethylrocaglamide display IC50 values that are remarkably similar to those of parental 697 cells (4 vs. 3nM, respectively)[1]. Didesmethylrocaglamide triggers apoptosis in MPNST cells with and without neurofibromatosis type 1 (NF1), possibly as a result of the DNA damage response. Insulin-like growth factor-1 receptor is just one of the oncogenic kinases that are reduced in didesmethylrocaglamide-treated sarcoma cells[1]. |
参考文献 |
|
其他信息 |
Didesmethylrocaglamide is a naturally-occurring derivative of [rocaglamide] and belongs to a class of anti-cancer phytochemicals referred to as "rocaglamides" derived from plants of the genus Aglaia. While traditionally used for their insecticidal benefits, this class of compounds is now being studied for use as chemotherapeutic agents in the treatment of various leukemias, lymphomas, and carcinomas. Of the known derivatives of rocaglamide, didesmethylrocaglamide appears to carry the most potent anti-tumour activity.
Didesmethylrocaglamide has been reported in Aglaia argentea, Aglaia perviridis, and other organisms with data available. Mechanism of Action Little research has been conducted specifically regarding didesmethylrocaglamide, but its mechanism of action is likely to be congruent with the rest of the rocaglamide class. Didesmethylrocaglamide’s anti-tumor activity, similar to other rocaglamide derivatives, is driven primarily via inhibition of protein synthesis in tumor cells. Inhibition of protein synthesis is accomplished via inhibition of prohibitin 1 (PHB1) and prohibitin 2 (PHB2) - these proteins are necessary in the proliferation of cancer cells and are implicated in the Ras-mediated CRaf-MEK-ERK signaling pathway responsible for phosphorylating eIF4E, a key factor in the initiation of protein synthesis. There is also some evidence that rocaglamides can act directly on eIF4A, another translation initiation factor of the eIF4F complex ultimately responsible for initiation of protein synthesis. Inhibition of protein synthesis has a number of downstream effects. Many of the proteins that are down-regulated in response to protein synthesis inhibition in tumor cells are short-lived proteins responsible for regulation of the cell cycle, such as Cdc25A. Cdc25A is an oncogene that can become overexpressed in certain cancers and lead to unchecked cell growth. In addition to inhibiting its synthesis via the mechanism described above, rocaglamides promote degradation of Cdc25A via activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway. This pathway is normally activated in response to DNA damage and serves to reduce the expression of proteins responsible for cell cycle progression, thereby inhibiting proliferation of damaged (i.e. tumour) cells. Inhibition of protein synthesis also appears to prevent the actions of the transcription factor heat shock factor 1 (HSF1), leading to an increased expression of thioredoxin-interacting protein (TXNIP) which is negatively regulated by HSF1. TXNIP is a negative regulator of cell glucose uptake, and its increased expression blocks glucose uptake and consequently impairs the proliferation of malignant cells. Rocaglamides also appear to induce apoptosis in tumor cells via activation of the pro-apoptotic proteins p38 and JNK and inhibition of the anti-apoptotic Mcl-1 protein. Similarly, they have been studied as an adjuvant in TRAIL-resistant cancers due to their ability to inhibit the synthesis of c-FLIP and IAP/XIAP - these anti-apoptotic proteins can become elevated in certain cancers, preventing the induction of apoptosis and resulting in resistance to TRAIL-based therapies. |
分子式 |
C27H27NO7
|
---|---|
分子量 |
477.505788087845
|
精确质量 |
477.18
|
元素分析 |
C, 67.91; H, 5.70; N, 2.93; O, 23.45
|
CAS号 |
177262-30-5
|
相关CAS号 |
Rocaglamide;84573-16-0
|
PubChem CID |
397614
|
外观&性状 |
White to off-white solid powder
|
LogP |
2.2
|
tPSA |
121
|
氢键供体(HBD)数目 |
3
|
氢键受体(HBA)数目 |
7
|
可旋转键数目(RBC) |
6
|
重原子数目 |
35
|
分子复杂度/Complexity |
767
|
定义原子立体中心数目 |
5
|
SMILES |
COC1=CC=C(C=C1)[C@]23[C@@H]([C@H]([C@H]([C@]2(C4=C(O3)C=C(C=C4OC)OC)O)O)C(=O)N)C5=CC=CC=C5
|
InChi Key |
RMNPQEWLGQURNX-PXIJUOARSA-N
|
InChi Code |
InChI=1S/C27H27NO7/c1-32-17-11-9-16(10-12-17)27-22(15-7-5-4-6-8-15)21(25(28)30)24(29)26(27,31)23-19(34-3)13-18(33-2)14-20(23)35-27/h4-14,21-22,24,29,31H,1-3H3,(H2,28,30)/t21-,22-,24-,26+,27+/m1/s1
|
化学名 |
(1R,2R,3S,3aR,8bS)-1,8b-dihydroxy-6,8-dimethoxy-3a-(4-methoxyphenyl)-3-phenyl-2,3-dihydro-1H-cyclopenta[b][1]benzofuran-2-carboxamide
|
别名 |
Didesmethylrocaglamide; rocaglamide-derivative; DDR
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
DMSO: ~100 mg/mL (~209.4 mM)
|
---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。 *生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 View More
配方 3 中的溶解度: ≥ 2.5 mg/mL (5.24 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0942 mL | 10.4710 mL | 20.9420 mL | |
5 mM | 0.4188 mL | 2.0942 mL | 4.1884 mL | |
10 mM | 0.2094 mL | 1.0471 mL | 2.0942 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。