规格 | 价格 | 库存 | 数量 |
---|---|---|---|
10 mM * 1 mL in DMSO |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
靶点 |
RIP3K (IC50 = 1.3 nM)
|
||
---|---|---|---|
体外研究 (In Vitro) |
当浓度为 1 μM 时,GSK'872 无法抑制所测试的 300 种人类蛋白激酶中的大部分。直接测试表明它不能抑制RIP1激酶。在 HT-29 细胞中,GSK'872 以浓度依赖性方式抑制 TNF 诱导的坏死性凋亡。与无细胞生化测定相比,基于细胞的测定的 IC50 高 100-1000 倍。在从全血中分离的原代人中性粒细胞中,GSK'872 也能抑制坏死性凋亡。 GSK'872 阻断两种与 RIP1 无关的坏死性凋亡、TLR3 或 DAI 诱导的死亡途径。它会导致 caspase 激活,随后导致细胞凋亡[1]。
|
||
体内研究 (In Vivo) |
与体内缺血损伤后未治疗相比,GSK'872 治疗显着降低了 HIF-1 表达[3]。< br >
GSK ' 872可改善脑水肿患者的神经功能[3]
与假手术大鼠相比,SAH大鼠神经功能受损(P < 0.01,图3A),脑含水量明显增加(P < 0.01,图3B)。与对照大鼠相比,GSK 872给药显著改善了神经功能(P < 0.05,图3A),降低了脑含水量(P < 0.01,图3B)。 注射GSK ' 872可减少SAH后72 h的坏死神经细胞数量[3] 与实验1一致,在72 h时,SAH大鼠的坏死细胞广泛分布(P < 0.001,图3C, D)。注射GSK ' 872后,与对照大鼠相比,坏死细胞数量明显减少(P < 0.01,图3C, D)。 GSK ' 872降低RIPK3和MLKL蛋白表达,减少坏死神经细胞数量[3] RIPK3表达显著增加在SAH +车辆在SAH后72 h组与虚假的组(P < 0.001,图4 a, B),葛兰素史克公司872年政府显著降低RIPK3表达相比SAH +车辆组(P < 0.01,图4 a, B)。符合RIPK3表达式,MLKL水平也显著增加在SAH +车辆组(P < 0.001,图4 a, C),但减少了葛兰素史克公司的872年治疗SAH后72 h (P < 0.05,图4 a, C)。 |
||
酶活实验 |
GSK872(也称为 GSK2399872A、GSK872 或 GSK-872)是一种有效的选择性 RIPK3(受体相互作用蛋白激酶 3)抑制剂。它对 RIP3 激酶结构域具有高结合亲和力,IC50 值为 1.8 nM,并且抑制激酶活性,IC50 为 1.3 nM。
|
||
细胞实验 |
RIP3 激酶抑制剂 GSK'843 或 GSK'872 用于在 TNF 处理后,在载体对照 (DMSO) 或其他处理中存在 Z-VAD-fmk 的情况下,以指定浓度处理 3T3-SA 细胞 18 小时。
细胞活力测定[3] 采用台盼蓝排除法和3-(4,5 -二甲基噻唑-2-基)- 2,5 -二苯基溴化四唑(MTT)法测定细胞活力。在DLM治疗前4小时给予抑制剂[n-乙酰半胱氨酸(NAC)、丁基羟基异素(BHA)、IM54、Bay11-7082、Z-VAD-FMK、caspase-8抑制剂、GSK-872和necrostatin-1 (Nec-1)]治疗。 |
||
动物实验 |
|
||
参考文献 |
|
||
其他信息 |
Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.[1]
Deltamethrin (DLM), a synthetic pyrethroid insecticide, is used all over the world for indoor and field pest management. In the present study, we investigated the elicited pathogenesis of DLM-induced hepatotoxicity in rat primary hepatocytes. DLM-induced cell death was accompanied with increased ROS generation, decreased mitochondrial membrane potential and G2/M arrest. Pre-treatment with N-acetyl cysteine/butylated hydroxyanisole/IM54 could partly rescue hepatocytes suggesting that ROS might play a role in DLM-induced toxicity. Interestingly, DLM treatment resulted in a caspase-independent but non-apoptotic cell death. Pre-treatment with pan-caspase inhibitor (ZVAD-FMK) could not rescue hepatocytes. Unaltered caspase-3 activity and absence of cleaved caspase-3 also corroborated our findings. Further, LDH release and Transmission electron microscopy (TEM) analysis demonstrated that DLM incites membrane disintegrity and necrotic damage. Immunochemical staining revealed an increased expression of inflammatory markers (TNFα, NFκB, iNOS, COX-2) following DLM treatment. Moreover, the enhanced RIPK3 expression in DLM treated groups and prominent rescue from cell death by GSK-872 indicated that DLM exposure could induce programmed necrosis in hepatocytes. The present study demonstrates that DLM could induce hepatotoxicity via non-apoptotic mode of cell death.[2] Necroptosis is an inflammatory form of cell death that depends on receptor-interacting serine-threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) and displays the morphological characteristics of necrosis. To date, it is unclear to what extent necroptosis contributes to subarachnoid hemorrhage (SAH) induced brain injury. The present study aimed to investigate the RIPK3-mediated necroptosis and the effects of the RIPK3 selective inhibitor GSK'872 in early brain injury following SAH. After SAH, RIPK3 expression increased as early as 6 h and peaked at 72 h. Double immunofluorescence staining revealed that RIPK3 was mainly located in neurons. Most necrotic cells were neurons, which were further confirmed by TEM. Intracerebroventricular injection of GSK'872 (25 mM) could attenuate brain edema and improve neurological function following SAH and reduce the number of necrotic cells. In addition, GSK'872 could also decrease the protein levels of RIPK3 and MLKL, and cytoplasmic translocation and expression of HMGB1, an important pro-inflammatory protein. Taken together, the current study provides the new evidence that RIPK3-mediated necroptosis is involved in early brain injury and GSK'872 decreases the RIPK3-mediated necroptosis and subsequent cytoplasmic translocation and expression of HMGB1, as well as ameliorates brain edema and neurological deficits.[3] |
分子式 |
C19H17N3O2S2
|
---|---|
分子量 |
383.49
|
精确质量 |
383.076
|
元素分析 |
C, 59.51; H, 4.47; N, 10.96; O, 8.34; S, 16.72
|
CAS号 |
1346546-69-7
|
相关CAS号 |
GSK-872 hydrochloride;2703752-81-0
|
PubChem CID |
54674134
|
外观&性状 |
White to yellow solid powder
|
密度 |
1.4±0.1 g/cm3
|
沸点 |
625.7±55.0 °C at 760 mmHg
|
闪点 |
332.2±31.5 °C
|
蒸汽压 |
0.0±1.8 mmHg at 25°C
|
折射率 |
1.704
|
LogP |
3.1
|
tPSA |
109
|
氢键供体(HBD)数目 |
1
|
氢键受体(HBA)数目 |
6
|
可旋转键数目(RBC) |
4
|
重原子数目 |
26
|
分子复杂度/Complexity |
592
|
定义原子立体中心数目 |
0
|
SMILES |
S(C1C=CC2C(=C(C=CN=2)NC2C=CC3=C(C=2)N=CS3)C=1)(C(C)C)(=O)=O
|
InChi Key |
ZCDBTQNFAPKACC-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C19H17N3O2S2/c1-12(2)26(23,24)14-4-5-16-15(10-14)17(7-8-20-16)22-13-3-6-19-18(9-13)21-11-25-19/h3-12H,1-2H3,(H,20,22)
|
化学名 |
N-(6-propan-2-ylsulfonylquinolin-4-yl)-1,3-benzothiazol-5-amine
|
别名 |
GSK2399872A; GSK872; GSK-872; GSK 872; GSK2399872-A; GSK2399872 A; GSK-2399872A; 1346546-69-7; GSK'872; N-(6-(isopropylsulfonyl)quinolin-4-yl)benzo[d]thiazol-5-amine; N-5-benzothiazolyl-6-[(1-methylethyl)sulfonyl]-4-Quinolinamine; C19H17N3O2S2; GSK 872; GSK-2399872 A
|
HS Tariff Code |
2934.99.9001
|
存储方式 |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
运输条件 |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
溶解度 (体外实验) |
|
|||
---|---|---|---|---|
溶解度 (体内实验) |
配方 1 中的溶解度: ≥ 2.5 mg/mL (6.52 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。 *20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。 配方 2 中的溶解度: ≥ 2.5 mg/mL (6.52 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。 View More
配方 3 中的溶解度: ≥ 2.08 mg/mL (5.42 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。 1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液)); 2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方): 10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline); 假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL; 3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例; 4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶; 5、为保证最佳实验结果,工作液请现配现用! 6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们; 7、 以上所有助溶剂都可在 Invivochem.cn网站购买。 |
制备储备液 | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6076 mL | 13.0381 mL | 26.0763 mL | |
5 mM | 0.5215 mL | 2.6076 mL | 5.2153 mL | |
10 mM | 0.2608 mL | 1.3038 mL | 2.6076 mL |
1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;
2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;
3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);
4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。
计算结果:
工作液浓度: mg/mL;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
(2) 一定要按顺序加入溶剂 (助溶剂) 。
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT05804123 | Recruiting | Drug: Cefotaxime Drug: Ciprofloxacin |
Upper Respiratory Tract Infections |
Anabio R&D | October 28, 2021 | Not Applicable |