Isoeugenol

别名: 异丁香酚;4-丙烯基-2-甲氧基苯酚;异丁香酚 (顺反异构体混和物);2-甲氧基-4-(1-丙烯基)-苯酚;2-甲氧基-4-丙烯基苯酚;Isoeugenol (cis- and trans- mixture) 异丁香酚 (顺反异构体混和物); 丙烯基-2-甲氧基苯酚标准品;丁香酚;异EUGENOL(CIS AND TRANS 混合物)(P);异丁香;异丁香酚 标准品;异丁香酚(4-丙烯基-2-甲氧基苯酚、对丙烯基邻甲氧基本酚、异丁子香酚);异丁香酚(顺反异构体混合物);异丁香酚(顺式+反式) 标准品;异丁香酚(顺式和反式异构体混合物);异丁香酚(正+反);异丁香酚, 顺反异构体混合物;异丁香酚食品级;异丁子香酚;2-甲氧基-(1-丙烯)酚;2-甲氧基-(1-丙烯)酚,异丁香油酚,异丁子香酚,对丙烯基邻甲氧基本酚;4-丙烯基-2-甲氧基苯酚、异丁子香酚;顺﹑反式-异丁香油酚;异丁香酚(正+反),Isoeugenol ,分析标准品,用于环境分析;异丁香油酚;异丁香子酚;丙烯基愈创木酚 (顺反混合物);4-羟基-3-甲氧基-1-丙烯基苯 (顺反混合物)
目录号: V12254 纯度: ≥98%
异丁香酚是肉豆蔻、丁香和肉桂的精油成分。
Isoeugenol CAS号: 97-54-1
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10g
25g
Other Sizes
点击了解更多
  • 与全球5000+客户建立关系
  • 覆盖全球主要大学、医院、科研院所、生物/制药公司等
  • 产品被大量CNS顶刊文章引用
InvivoChem产品被CNS等顶刊论文引用
产品描述
异丁香酚是肉豆蔻、丁香和肉桂的精油成分。异丁香酚抑制大肠杆菌和无害李斯特菌,MIC 分别为 0.6 mg/mL 和 1 mg/mL。
生物活性&实验参考方法
体外研究 (In Vitro)
许多革兰氏阳性和革兰氏阴性细菌,如 B 型沙门氏菌、地衣芽孢杆菌、藤黄微球菌、大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌,都对异丁香酚的抗菌作用敏感[1]。
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Following a single oral dose of (14)C-isoeugenol (156 mg/kg, 50 uCi/kg), greater than 85% of the administered dose was excreted in the urine predominantly as sulfate or glucuronide metabolites by 72 hr. Approximately 10% was recovered in the feces, and less than 0.1% was recovered as CO(2) or expired organics. No parent isoeugenol was detected in the blood at any of the time points analyzed. Following iv administration (15.6 mg/kg, 100 uCi/kg), isoeugenol disappeared rapidly from the blood. The half life was 12 min and the Cl(s) was 1.9 L/min/kg. Excretion characteristics were similar to those of oral administration. The total amount of radioactivity remaining in selected tissues by 72 hr was less than 0.25% of the dose following either oral or intravenous administration. Results of these studies show that isoeugenol is rapidly metabolized and is excreted predominantly in the urine as phase II conjugates of the parent compound.
Metabolism / Metabolites
Following a single oral dose of (14)C-isoeugenol (156 mg/kg, 50 uCi/kg), greater than 85% of the administered dose was excreted in the urine predominantly as sulfate or glucuronide metabolites by 72 hr. Approximately 10% was recovered in the feces, and less than 0.1% was recovered as CO(2) or expired organics. No parent isoeugenol was detected in the blood at any of the time points analyzed. Following iv administration (15.6 mg/kg, 100 uCi/kg), isoeugenol disappeared rapidly from the blood. The half life was 12 min and the Cl(s) was 1.9 L/min/kg. Excretion characteristics were similar to those of oral administration. The total amount of radioactivity remaining in selected tissues by 72 hr was less than 0.25% of the dose following either oral or intravenous administration. Results of these studies show that isoeugenol is rapidly metabolized and is excreted predominantly in the urine as phase II conjugates of the parent compound.
Trans-isoeugenol has known human metabolites that include trans-Isoeugenol-O-glucuronide.
Biological Half-Life
Following iv administration (15.6 mg/kg, 100 uCi/kg) /of/ isoeugenol ... the half life was 12 min ... .
毒性/毒理 (Toxicokinetics/TK)
Non-Human Toxicity Values
LD50 Rat oral 1560 mg/kg
LD50 Guinea pig oral 1410 mg/kg
参考文献

[1]. Isoeugenol has a non-disruptive detergent-like mechanism of action.Front Microbiol. 2015 Jul 28;6:754.

其他信息
Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils.
Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol.
Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test.
Isoeugenol has been reported in Perilla frutescens, Mandragora autumnalis, and other organisms with data available.
Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915).
E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: cis-Isoeugenol (annotation moved to).
Drug Indication
Isoeugenol is approved by the FDA for use within allergenic epicutaneous patch tests which are indicated for use as an aid in the diagnosis of allergic contact dermatitis (ACD) in persons 6 years of age and older.
Mechanism of Action
/The investigators/ previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). .. The present study ... investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 ug/mL (0.61 mM) for isoeugenol, 100 ug/mL (0.58 mM) for DEM, 3 ug/mL (14.8 uM) for DNCB, and 250 ug/mL (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release.
Isoeugenol and its structural analog eugenol suppressed the lymphoproliferative response to concanavalin A stimulation in B6C3F1 mouse splenocyte cultures. Isoeugenol inhibited phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Io)-induced IL-2 mRNA expression and protein secretion in B6C3F1 mouse splenocytes, and in EL4.IL-2 mouse T-cells, as determined by real-time RT-PCR and ELISA, respectively. To further characterize the inhibitory mechanism of isoeugenol at the transcriptional level, ... the DNA binding activity of the transcription factors for IL-2 using an electrophoretic mobility shift assay /was examined/. Isoeugenol decreased the binding activity of NF-AT and NF-kappaB in PMA/Io-stimulated EL4.IL-2 cells, but no significant effect was observed for AP-1 or Oct binding activity. Western blot analysis showed that isoeugenol also decreased the nuclear translocation of cytoplasmic NF-AT and NF-kappaB. These results suggest that isoeugenol suppresses IL-2 production through a decrease of IL-2 mRNA expression and that the inhibition is mediated, at least in part, through the down-regulation of NF-AT and NF-kappaB.
The phenolic derivatives eugenol and isoeugenol, which are naturally found in essential oils of different spices, are commonly used as fragrances. Recently data demonstrated that growth suppression produced by these substances occurs in keratinocytes and that the effects may be mediated via aryl hydrocarbon receptor (AhR) interactions. In this study the effects of eugenol and isoeugenol were determined on intracellular localization of AhR, AhR target gene expression, AhR-dependent cell cycle regulation, and proliferation in HaCaT cells. Both compounds produced a rapid and marked translocation of AhR into the nucleus, induced the expression of the AhR target genes cytochrome P-450 1A1 (CYP1A1) and AhR repressor (AhRR), and inhibited proliferation of HaCaT cells. Among the G(1) phase cell cycle-related proteins, levels of the retinoblastoma protein (RB), which is known to interact with AhR, and levels of the cyclin dependent kinase (CDK) 6 were reduced by eugenol and isoeugenol, whereas steady-state levels of CDK2 and CDK4 remained unaffected. Protein levels of CDK inhibitor (CKI) p27(KIP1), known to be modulated in an AhR-dependent manner, were increased after treatment with both substances. In conclusion, data show that the antiproliferative properties of eugenol and isoeugenol in HaCaT cells are mediated through AhR ... .
Effects of eugenol compounds on the production of nitric oxide (NO) in RAW264.7 macrophages were analyzed in relation to the anti-inflammatory action of these compounds. Eugenol and isoeugenol inhibited lipopolysaccharide (LPS)-dependent production of NO, which was due to the inhibition of protein synthesis of inducible nitric oxide synthase (iNOS). Isoeugenol showed the most effective inhibitory effect and eugenol was less effective. LPS-dependent expression of cyclooxygenase-2 (COX-2) protein was also inhibited markedly by isoeugenol, and less effectively by eugenol. Anti-inflammatory action of eugenol compounds may be explained by the inhibition of NO production and COX-2 expression, the pro-inflammatory mediators.
For more Mechanism of Action (Complete) data for Isoeugenol (8 total), please visit the HSDB record page.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C10H12O2
分子量
164.2011
精确质量
164.083
CAS号
97-54-1
相关CAS号
63661-65-4 (sodium salt)
PubChem CID
853433
外观&性状
Colorless to light yellow liquid
密度
1.1±0.1 g/cm3
沸点
266.6±20.0 °C at 760 mmHg
熔点
-10 °C
闪点
122.9±6.7 °C
蒸汽压
0.0±0.6 mmHg at 25°C
折射率
1.578
LogP
2.45
tPSA
29.46
氢键供体(HBD)数目
1
氢键受体(HBA)数目
2
可旋转键数目(RBC)
2
重原子数目
12
分子复杂度/Complexity
154
定义原子立体中心数目
0
SMILES
OC1C(OC)=CC(C=CC)=CC=1
InChi Key
BJIOGJUNALELMI-ONEGZZNKSA-N
InChi Code
InChI=1S/C10H12O2/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3-7,11H,1-2H3/b4-3+
化学名
2-methoxy-4-[(E)-prop-1-enyl]phenol
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~609.01 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (15.23 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (15.23 mM) (饱和度未知) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL澄清DMSO储备液加入900 μL 20% SBE-β-CD生理盐水溶液中,混匀。
*20% SBE-β-CD 生理盐水溶液的制备(4°C,1 周):将 2 g SBE-β-CD 溶解于 10 mL 生理盐水中,得到澄清溶液。

View More

配方 3 中的溶解度: ≥ 2.5 mg/mL (15.23 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 6.0901 mL 30.4507 mL 60.9013 mL
5 mM 1.2180 mL 6.0901 mL 12.1803 mL
10 mM 0.6090 mL 3.0451 mL 6.0901 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

生物数据图片
  • Time-kill curves of isoeugenol's effect on E. coli (A) and L. innocua (B) cell viability. Cells were treated with isoeugenol at 0 (black circles), ½ × MIC (gray triangle), MIC (dark gray square), or 2× MIC (white diamond) in TSB (pH 6.0) at 25°C. Dashed line indicates detection limit (50 CFU/mL). Error bars are standard deviation (SD) of triplicates.[1].Isoeugenol has a non-disruptive detergent-like mechanism of action.Front Microbiol. 2015 Jul 28;6:754.
  • Isoeugenol induce changes in cytoplasmic membrane integrity (A) and esterase activity (B) of E. coli (black bars) and L. innocua (gray bars) cells. Living and heat treated cells suspended in MES-buffer (pH 6.0) were treated with or without isoeugenol at different concentrations for an hour at 25°C, then harvested and resuspended in MES-buffer together with FDA, followed by incubation for 30 min at 37°C. Cells were harvested and resuspended in MES-buffer before PI staining, except a control with no-stain. Cells with damaged membranes (A) or inactive esterases (B) were stained with PI or FDA, respectively. Asterisk indicates no statistical significant difference from untreated sample. Error bars = SD (n = 3).[1].Isoeugenol has a non-disruptive detergent-like mechanism of action.Front Microbiol. 2015 Jul 28;6:754.
  • Increasing concentrations of isoeugenol induce calcein leakage from large unilamellar vesicles of E. coli polar lipid extract. Vesicles with encapsulated calcein were suspended in MES-buffer (pH 6.0) and exposed to increasing concentrations of isoeugenol, either expressed as concentration (mg/mL, lower axis) or as a function of isoeugenol to lipid concentration ([IE]/[L], upper axis). Calcein intensity signal was measured before and after 1 h treatment at 37°C, and normalized to the signal obtained at full permeabilization for individual [IE]/[L] ratios. A lipid concentration of ~12 nmol was used for all [IE]/[L] ratios.[1].Isoeugenol has a non-disruptive detergent-like mechanism of action.Front Microbiol. 2015 Jul 28;6:754.
联系我们