Kynurenic acid

别名: Kynuronic acid; Kynurenic acid; Kynurenic acid 4-羟基喹啉-2-羧酸;4-羟基喹啉-2-甲酸;犬尿喹啉酸;犬尿喹酸;犬尿喹啉酸水合物;4-羟基-2-喹啉羧酸水合物;4-羟基喹啉二甲酸;Kynurenic Acid Hydrate 犬尿喹啉酸水合物;氯氨酮;4-羟基-2-喹啉甲酸;4-羟基-2-喹啉甲酸 水合物;4-羟基喹啉-2-羧酸 水合物
目录号: V23369 纯度: ≥98%
由于该产品被列入DEA管制物质清单,现已停止生产。Kynurenic Acid 是一种内源性色氨酸代谢物,也是一种广谱(宽范围)拮抗剂,针对目标 NMDA、谷氨酸、α7 烟碱乙酰胆碱受体。
Kynurenic acid CAS号: 492-27-3
产品类别: New1
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
100mg
500mg
1g

Other Forms of Kynurenic acid:

  • 犬尿酸-3,5,6,7,8-d5
  • 5,7-Dichlorokynurenic acid sodium (5,7-DCKA sodium)
  • 7-Chlorokynurenic acid sodium salt
  • 犬尿烯酸钠盐
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
产品描述
由于该产品被列入DEA管制物质清单,现已停止生产。Kynurenic Acid 是一种内源性色氨酸代谢物,也是一种广谱(宽范围)拮抗剂,针对目标 NMDA、谷氨酸、α7 烟碱乙酰胆碱受体。 Kynurenic Acid 也是 GPR35/CXCR8 的激动剂。
生物活性&实验参考方法
体外研究 (In Vitro)
犬尿酸是一种中间尿酸通道,被 GPR35 吸收。在 G qi/o 嵌合 G 蛋白中,磷酸肌醇合成和钙刺激是通过犬尿酸通过 GPR35 偶联机制启动的。在表达 GPR35 的细胞中,犬尿酸可增加 [35S]鸟苷 5'-O-(3-硫代三磷酸) 结合;用百日咳毒素治疗可以消除这种影响。 GPR35 内化也由犬尿酸诱导 [1]。这些化合物的毫摩尔浓度用于鉴定 KYNA 的神经调节能力以及随之而来的神经保护和抗惊厥作用。另一种可能性是 KYNA 作为内部犬尿酸盐发挥作用,具有较浅的闭合曲线和针对培养海马的非竞争性定位,如这一点及其对负责这些作用的透明离子型谷氨酸受体的影响 [NMDA,α-amino-3 -羟基-5-甲基-4-异恶唑丙酸(AMPA)和红藻碱性盐]。这些受体彼此之间的亲和力较低,并且已知大脑中的 KYNA 浓度在亚微摩尔范围内。 α7nAChRs 对神经元的 IC50 值在低微摩尔范围内 [2]。
体内研究 (In Vivo)
小鼠外周血白细胞活性受犬尿酸影响;最大浓度(250 mg/L)影响最小,最低浓度(2.5 mg/L)影响最大。给动物喂酸7天和28天后,最小剂量的犬尿酸诱导T的缺血反应(p<0.05)[3]。
药代性质 (ADME/PK)
Metabolism / Metabolites
Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
毒性/毒理 (Toxicokinetics/TK)
Toxicity Summary
Uremic toxins such as kynurenic acid are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869).
参考文献
[1]. Wang J, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006 Aug 4;281(31):22021-8.
[2]. Albuquerque EX, et al. Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol. 2013 Apr 15;85(8):1027-32.
[3]. Małaczewska J, et al. Effect of oral administration of kynurenic acid on the activity of the peripheral blood leukocytes in mice. Cent Eur J Immunol. 2014;39(1):6-1
其他信息
Kynurenic acid is a quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. It has a role as a G-protein-coupled receptor agonist, a NMDA receptor antagonist, a nicotinic antagonist, a neuroprotective agent, a human metabolite and a Saccharomyces cerevisiae metabolite. It is a monohydroxyquinoline and a quinolinemonocarboxylic acid. It is a conjugate acid of a kynurenate.
Kynurenic Acid is under investigation in clinical trial NCT02340325 (FS2 Safety and Tolerability Study in Healthy Volunteers).
Kynurenic acid has been reported in Ephedra transitoria, Ephedra pachyclada, and other organisms with data available.
Kynurenic acid is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNA's neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimer's disease, Parkinson's disease and Huntington's disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimer's disease, by the increased KYNA metabolism in down's syndrome and the enhancement of KYNA function during the early stage of Huntington's disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (A3279, A3280).
Kynurenic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
A broad-spectrum excitatory amino acid antagonist used as a research tool.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C10H7NO3
分子量
189.17
精确质量
189.042
CAS号
492-27-3
相关CAS号
Kynurenic acid-d5;350820-13-2;Kynurenic acid sodium;2439-02-3
PubChem CID
3845
外观&性状
Light yellow to yellow solid powder
密度
1.4±0.1 g/cm3
沸点
358.4±42.0 °C at 760 mmHg
熔点
275 °C (dec.)(lit.)
闪点
170.5±27.9 °C
蒸汽压
0.0±0.8 mmHg at 25°C
折射率
1.639
LogP
2.28
tPSA
70.42
氢键供体(HBD)数目
2
氢键受体(HBA)数目
4
可旋转键数目(RBC)
1
重原子数目
14
分子复杂度/Complexity
309
定义原子立体中心数目
0
SMILES
O=C1C([H])=C(C(=O)O[H])N([H])C2=C([H])C([H])=C([H])C([H])=C21
InChi Key
HCZHHEIFKROPDY-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H7NO3/c12-9-5-8(10(13)14)11-7-4-2-1-3-6(7)9/h1-5H,(H,11,12)(H,13,14)
化学名
4-oxo-1H-quinoline-2-carboxylic acid
别名
Kynuronic acid; Kynurenic acid; Kynurenic acid
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
0.1 M NaOH : ~12.5 mg/mL (~66.08 mM)
DMSO : ~9 mg/mL (~47.58 mM)
H2O : < 0.1 mg/mL
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 1.25 mg/mL (6.61 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 12.5 mg/mL澄清的DMSO储备液加入到400 μL PEG300中,混匀;再向上述溶液中加入50 μL Tween-80,混匀;然后加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 1.25 mg/mL (6.61 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 12.5 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

View More

配方 3 中的溶解度: 33.33 mg/mL (176.19 mM) in 50% PEG300 50% Saline (这些助溶剂从左到右依次添加,逐一添加), 悬浊液; 超声助溶。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。


请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 5.2863 mL 26.4313 mL 52.8625 mL
5 mM 1.0573 mL 5.2863 mL 10.5725 mL
10 mM 0.5286 mL 2.6431 mL 5.2863 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们