Lixisenatide acetate

别名: AVE0010Adlyxin; Lyxumia; ZP10A peptide; Lixisenatide Acetate; 1997361-87-1; Lixisenatide acetate (320367-13-3 free base); ZP10 A peptide; ZP10-A peptide; AVE-0010; AVE 0010 醋酸利司那肽
目录号: V31946 纯度: =98.20%
Lixisenatideacetate (AVE-0010;ZP-10A;Adlyxin;Lyxumia;ZP10A),Lixisenatide的醋酸盐,是胰高血糖素样肽-1受体(GLP-1R)的有效且短效的激动剂,于2016年批准用于治疗 2 型糖尿病 (T2DM)。
Lixisenatide acetate CAS号: 1997361-87-1
产品类别: GCGR
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
1mg
2mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Lixisenatide acetate:

  • 利西拉来
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: =98.20%

产品描述
Lixisenatideacetate(AVE-0010;ZP-10A;Adlyxin;Lyxumia;ZP10A)是Lixisenatide的醋酸盐,是一种有效的、短效的胰高血糖素样肽-1受体(GLP-1R)激动剂,已在美国批准上市。 2016年用于治疗2型糖尿病(T2DM)。在体外受体结合研究中,它可激活 GLP-1R,对人 GLP-1 受体的 IC50 值为 1.4 nM。
生物活性&实验参考方法
靶点
GLP-1 receptor
体外研究 (In Vitro)
体外活性:Lixisenatide 保护 Ins-1 细胞(大鼠来源的 β 细胞系)免受脂质和细胞因子诱导的细胞凋亡。更重要的是,Lixisenatide 还可以防止脂毒性诱导的人胰岛胰岛素耗竭,并在体外保护胰岛素的产生、储存和胰腺 β 细胞功能。在过表达人 GLP-1 受体的 CHO-K1 细胞中进行的结合研究表明,Lixisenatide 是一种非常有效的选择性 GLP-1 受体激动剂——Lixisenatide 的结合亲和力 (Ki = 1.33 ± 0.22 nM) 约为 4 倍人类 GLP-1 的值 (Ki = 5.09 ± 1.19 nM)。在 80 多种不同的结合测定中,利西拉来未表现出与其他潜在药物靶标的任何相关相互作用,证实了其对 GLP-1 受体的高选择性激酶测定:利西拉来是胰高血糖素样肽-1 受体的短效激动剂(GLP-1R) 在体外受体结合研究中对人 GLP-1 受体的 IC50 值为 1.4 nM。它可以通过每日一次的方案进行给药。细胞测定:Lixisenatide 能够保护 Ins-1 细胞(大鼠来源的 β 细胞系)免受脂质和细胞因子诱导的细胞凋亡。更重要的是,Lixisenatide 还可以防止脂毒性诱导的人胰岛胰岛素耗竭,并在体外保护胰岛素的产生、储存和胰腺 β 细胞功能。
体内研究 (In Vivo)
利西拉来的半衰期为2-4小时,与长效GLP-1肽、利拉鲁肽和阿必鲁肽相比,它被归类为短效GLP-1受体激动剂。利西拉来可以显着改善葡萄糖刺激的胰岛素分泌。在健康血糖正常的狗中,单次皮下注射利司那肽在口服葡萄糖激发后会产生剂量依赖性的血浆葡萄糖降低,与安慰剂相比,在不增加胰岛素浓度的情况下,餐后血糖波动显着降低 67%。利西拉来对狗餐后血糖波动的影响至少部分与抑制胃排空和延迟肠道葡萄糖吸收有关。在 db/db 小鼠和 ZDF 大鼠中也证实了口服葡萄糖激发后血浆葡萄糖的剂量依赖性降低。重要的是,这种活性是葡萄糖依赖性的,在生理葡萄糖浓度下没有影响。在 db/db 小鼠中,长期服用利司那肽可防止对照动物中观察到的糖耐量进行性恶化,并与糖化血红蛋白 (HbA1c) 的剂量依赖性显着降低相关。在 ZDF 大鼠中,与对照动物相比,连续皮下注射 lixisenatide 50 μg/kg/天 12 周可显着降低基础血糖并改善口服葡萄糖耐量。它没有降血糖作用,并且不会改变血糖正常大鼠的 HbA1c。利西拉来可以通过刺激胰岛细胞增殖和新生以及抑制胰岛细胞凋亡来维持β细胞质量和功能。
酶活实验
体外受体结合研究表明,Lixisenatide 是胰高血糖素样肽-1 受体 (GLP-1R) 的短效激动剂,对人 GLP-1 受体的 IC50 值为 1.4 nM。可以采用每日一种的方案来给药。
GLP-1受体结合研究。[2]
简而言之,收获了携带人重组GLP-1受体的CHO-K1细胞。含有受体的膜部分被纯化并用于。。。 ZP10A与人GLP-1受体的结合。GLP-1(7-36)酰胺与CHO-K1细胞中表达的人GLP-1受体结合的半数最大抑制(IC50)浓度为5.5±1.3 nM,该值在GLP-1与胰岛细胞系中发现的内源性受体和COS-7细胞中表示的重组受体结合的报告范围内(Goke和Conlon,1988;Goke等人,1989;Fehmann和Habener,1991;Thorens,1992;Wheeler等人,1993)。IC50。。。
细胞实验
Lixisenatide 能够预防 Ins-1 细胞(一种源自大鼠的 β 细胞系)中由脂质和细胞因子引起的细胞凋亡。更重要的是,利西拉来可以在体外维持胰岛素合成、储存和胰腺β细胞功能,并防止脂毒性诱导的人胰岛胰岛素耗竭。
动物实验
Pphosphate-buffered saline, pH 7.4; 0.01, 0.1, 1, 10, and 100 nmol/kg; i.p.
Male db/db mice C57BLKS/J-Leprdb/Leprdb
ZP10A demonstrated dose-dependent improvement of glucose tolerance with an ED50 value of 0.02 nmol/kg i.p. in an oral glucose tolerance test (OGTT) in diabetic db/db mice. After 42 days of treatment, ZP10A dose-dependently (0, 1, 10, or 100 nmol/kg b.i.d.; n = 10/group), decreased glycosylated hemoglobin (HbA1C) from 8.4 +/- 0.4% (vehicle) to a minimum of 6.2 +/- 0.3% (100 nmol/kg b.i.d.; p < 0.05 versus vehicle) in db/db mice. Fasting blood glucose (FBG), glucose tolerance after an OGTT, and HbA1C levels were significantly improved in mice treated with ZP10A for 90 days compared with vehicle-treated controls. Interestingly, these effects were preserved 40 days after drug cessation in db/db mice treated with ZP10A only during the first 50 days of the study. Real-time polymerase chain reaction measurements demonstrated that the antidiabetic effect of early therapy with ZP10A was associated with an increased pancreatic insulin mRNA expression relative to vehicle-treated mice. In conclusion, long-term treatment of diabetic db/db mice with ZP10A resulted in a dose-dependent improvement of FBG, glucose tolerance, and blood glucose control. Our data suggest that ZP10A preserves beta-cell function. ZP10A is considered one of the most promising new drug candidates for preventive and therapeutic intervention in type 2 diabetes.[2]
药代性质 (ADME/PK)
Absorption, Distribution and Excretion
Following subcutaneous administration, the median Tmax of lixisenatide ranged from 1-3.5 hours, with no clinically relevant differences in the rate of absorption noted between possible injection sites (i.e. thigh, abdomen, or arm).
Lixisenatide is presumably eliminated via glomerular filtration and proteolytic degradation.
The apparent volume of distribution following subcutaneous administration is approximately 100 L.
The mean apparent clearance of lixisenatide is approximately 35 L/h.
Metabolism / Metabolites
Lixisenatide is likely catabolized via non-specific proteolytic degradation.
Biological Half-Life
Following the administration of multiple doses in patients with type II diabetes mellitus, the mean terminal half-life of lixisenatide was approximately 3 hours.
毒性/毒理 (Toxicokinetics/TK)
Hepatotoxicity
In large clinical trials, serum enzyme elevations were no more common with lixisenatide therapy than with placebo or comparator agents. In pooled safety analyses of more than 5000 patients, ALT elevations above 3 times the upper limit of normal occurred in 0.6% of both lixisenatide and placebo groups and no instances of treatment related clinically apparent liver injury were reported. Since licensure, there have been no published case reports of hepatotoxicity due to lixisenatide and the product label does not list liver injury as an adverse event. Thus, liver injury due to lixisenatide, as with other GLP-1 analogues, must be rare, if it occurs at all.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of lixisenatide during breastfeeding. Because lixisenatide is a large peptide molecule with a molecular weight of 4858 daltons, the amount in milk is likely to be very low and absorption is unlikely because it is probably destroyed in the infant's gastrointestinal tract. Until more data become available, lixisenatide should be used with caution during breastfeeding, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Lixisenatide is approximately 55% bound to human plasma proteins.
参考文献

[1]. Core Evid. 2011:6:67-79.

[2]. J Pharmacol Exp Ther. 2003 Nov;307(2):490-6.

[3]. Regul Pept. 2010 Sep 24;164(2-3):58-64.

[4]. Diabetes Ther. 2016 Jun 18.

[5]. Regul Pept. 2013 Aug 10;185:1-8.

其他信息
Lixisenatide is a forty-four membered polypeptide consisting of L-His, Gly, L-Glu, Gly, L-Thr, L-Phe, L-Thr, L-Ser, L-Asp, L-Leu, L-Ser, L-Lys, L-Gln, L-Met, L-Glu, L-Glu, L-Glu, L-Ala, L-Val, L-Arg, L-Leu, L-Phe, L-Ile, L-Glu, L-Trp, L-Leu, L-Lys, L-Asn, Gly, Gly, LPro, L-Ser, L-Ser, Gly, L-Ala, L-Pro, L-Pro, L-Ser, L-Lys, L-Lys, L-Lys, L-Lys, L-Lys, and L-Lys-NH2 residues joined in sequence. Used as an adjunct to diet and exercise for the treatment of adults with type II diabetes. It has a role as a glucagon-like peptide-1 receptor agonist, a hypoglycemic agent and a neuroprotective agent. It is a polypeptide and a peptidyl amide.
Lixisenatide is a glucagon-like peptide-1 (GLP-1) receptor agonist used in the treatment of type II diabetes mellitus (T2DM). It is sold by Sanofi-Aventis under the brand name Adlyxin in the US and Lyxumia in the EU. Adlyxin recieved FDA approval July 28, 2016.
Lixisenatide is a recombinant DNA produced polypeptide analogue of human glucagon-like peptide-1 (GLP-1) which is used in combination with diet and exercise in the therapy of type 2 diabetes, either alone or in combination with other antidiabetic agents. Therapy with lixisenatide has not been associated with serum enzyme elevations or with episodes of clinically apparent liver injury.
See also: Insulin Glargine; Lixisenatide (component of).
Drug Indication
Lixisenatide is indicated as an adjunct to diet and exercise to improve glycemic control in adult patients with type II diabetes mellitus. It is also available in combination with [insulin glargine] for the same indication.
Lyxumia is indicated for the treatment of adults with type 2 diabetes mellitus to achieve glycaemic control in combination with oral glucose lowering medicinal products and/or basal insulin when these, together with diet and exercise, do not provide adequate glycaemic control. ,
Treatment of type II diabetes mellitus
Mechanism of Action
The activation of the GLP-1 receptor by lixisenatide results in the activation of adenylyl cyclase. This increases the concentration of cyclic adenosine monophosphate in the cell leading to the activation of protein kinase A (PKA) as well as Epac1 and Epac2. PKA, Epac1, and Epac2 are involved the in release of Ca2+ from the endoplasmic reticulum which is known as the "amplification" pathway which increases insulin release when the triggering pathway is activated. By activating this amplification pathway lixisenatide increases glucose stimulated insulin secretion.
Lixisenatide is a once-daily glucagon-like peptide 1 (GLP-1) receptor agonist mimicking several favorable actions of endogenous GLP-1 that result in improved glycemic control with little or no hypoglycemia and weight loss. Phase II trials have shown that lixisenatide 20 μg once daily restores first-phase insulin release in patients with type 2 diabetes and improves the second-phase insulin response. Administered once or twice daily for 4 weeks, it significantly reduced postprandial and fasting blood glucose levels, and glycosylated hemoglobin (HbA(1c)). The efficacy and safety of lixisenatide once daily is being assessed in the GETGOAL Phase III clinical trial program. Results have shown beneficial effects on HbA(1c) compared with placebo in combination with commonly used antidiabetes agents, with no increased risk of hypoglycemia and with beneficial weight reduction. Adverse effects were similar to those observed for available GLP-1 receptor agonists, the most frequent being gastrointestinal. Both GLP-1 receptor agonists and long-acting insulin analogs have demonstrated protective effects on beta cells in preclinical studies. This, along with the pronounced effect of lixisenatide on postprandial plasma glucose, provides a rationale for combining it with long-acting basal insulin analogs, in the hope that the additive effects on glycemic control combined with a potential benefit on islet cells may lead to a new treatment approach to control blood glucose better and prevent long-term complications in patients with type 2 diabetes.[1]
The glucagon-like peptide-1 (GLP-1) receptor represents an established therapeutic target in type 2 diabetes mellitus (T2DM). Agents that activate this receptor improve glucose tolerance alongside a low risk of hypoglycaemia, and have the potential to modify disease progression. Lixisenatide is a new potent and selective GLP-1 receptor agonist currently in development. The preclinical pharmacological profile of Lixisenatide suggests actions that are highly relevant to the long-term maintenance of glucose homeostasis. Lixisenatide protected Ins-1 cells (a rat-derived beta-cell line) from both lipid- and cytokine-induced apoptosis. More importantly, Lixisenatide also prevented lipotoxicity-induced insulin depletion in human islets and preserved insulin production, storage and pancreatic beta-cell function in vitro. Enhancement of insulin biosynthesis and pancreatic beta-cell volume could also be demonstrated in animal models of type 2 diabetes. The improvement of glucose-stimulated insulin secretion provided by Lixisenatide occurred in a strictly glucose-dependent manner. In animal models of diabetes, Lixisenatide improved basal blood glucose and HbA(1c) with a rapid onset and sustained duration of action, and prevented the deterioration of pancreatic responsiveness and glucose homeostasis. Lixisenatide also delayed gastric emptying and reduced food intake. The efficacy/safety profile of Lixisenatide is currently being studied further in an extensive ongoing Phase III clinical study programme. This article reviews the preclinical pharmacological profile of Lixisenatide.[3]
Introduction: The extent to which postprandial glucagon reductions contribute to lowering of postprandial glucose in patients with type 2 diabetes mellitus (T2DM) is currently unknown. The aim of this analysis was to determine whether a reduction in postprandial glucagon following treatment with the glucagon-like peptide-1 receptor agonist lixisenatide correlates with a reduction in postprandial glucose and glycated hemoglobin (HbA1c) in patients with T2DM. Methods: A post hoc analysis was performed on pooled data from the modified intent-to-treat populations of two lixisenatide Phase 3 trials: GetGoal-M (lixisenatide versus placebo as add-on to metformin) and GetGoal-S (lixisenatide versus placebo as add-on to sulfonylurea [SU] ± metformin). Glucagon levels were assessed 2 h after a standardized meal test performed at baseline and Week 24 and were examined for correlation with changes in 2-h postprandial glucose and HbA1c. Results: Lixisenatide reduced 2-h postprandial glucagon at Week 24 compared with placebo (P < 0.00001). The mean change in postprandial glucagon significantly correlated with reductions in postprandial glucose (P < 0.00001) and HbA1c (P < 0.00001). Conclusion: A reduction in postprandial glucagon following lixisenatide administration correlated with a decrease in postprandial glucose and HbA1c in patients with T2DM insufficiently controlled on metformin and/or SU. This suggests that lowering of postprandial glucagon contributes to the overall glycemic improvement observed with lixisenatide.[4]
Objectives: To determine the effects of lixisenatide, a new once-daily (QD) glucagon-like peptide-1 receptor agonist, on postprandial glucose (PPG) and gastric emptying, and the relationship between these effects in patients with type 2 diabetes mellitus (T2DM). Methods: Data were obtained from a randomized, double-blind, placebo-controlled, parallel-group study with treatment duration of 28 days in patients with T2DM receiving ≤2 oral antidiabetic drugs. Lixisenatide was injected subcutaneously using an ascending dose range (5-20 μg) increased every fifth day in increments of 2.5 μg. Blood glucose was determined before and after three standardized meals (breakfast, lunch, and dinner). Gastric emptying of the standardized breakfast was determined by a (13)C-octanoic acid breath test at baseline (Day-1) and at Day 28. Results: A total of 21 and 22 patients were randomized to lixisenatide 20 μg QD and placebo, respectively. With lixisenatide 20 μg QD, there was a reduction in PPG when compared with placebo after breakfast (p<0.0001), lunch (p<0.001) and dinner (p<0.05). Hence, lixisenatide 20 μg administered in the morning exhibited a pharmacodynamic effect on blood glucose throughout the day. Gastric emptying (50% emptying time) increased substantially from baseline with lixisenatide 20 μg QD, but not with placebo (change from baseline ± SD: -24.1 ± 133.1 min for placebo and 211.5 ± 278.5 min for lixisenatide; p<0.01). There was an inverse relationship between PPG area under the curve after breakfast and gastric emptying with lixisenatide 20 μg QD (n=17, r(2)=0.51, p<0.05), but not with placebo. Conclusions: In this study, lixisenatide at a dose of 20 μg QD reduced postprandial glycemic excursions in patients with T2DM, possibly as a result of sustained slowing of gastric emptying.[5]
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C215H347N61O65S
分子量
4858.4904282093
精确质量
4857.551
元素分析
C, 53.15; H, 7.20; N, 17.59; O, 21.40; S, 0.66
CAS号
1997361-87-1
相关CAS号
Lixisenatide; 320367-13-3
PubChem CID
16139342
序列
H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Ser-Lys-Lys-Lys-Lys-Lys-Lys-NH2; L-histidyl-glycyl-L-alpha-glutamyl-glycyl-L-threonyl-L-phenylalanyl-L-threonyl-L-seryl-L-alpha-aspartyl-L-leucyl-L-seryl-L-lysyl-L-glutaminyl-L-methionyl-L-alpha-glutamyl-L-alpha-glutamyl-L-alpha-glutamyl-L-alanyl-L-valyl-L-arginyl-L-leucyl-L-phenylalanyl-L-isoleucyl-L-alpha-glutamyl-L-tryptophyl-L-leucyl-L-lysyl-L-asparagyl-glycyl-glycyl-L-prolyl-L-seryl-L-seryl-glycyl-L-alanyl-L-prolyl-L-prolyl-L-seryl-L-lysyl-L-lysyl-L-lysyl-L-lysyl-L-lysyl-L-lysinamide
短序列
HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK; H-HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK-[NH2]
外观&性状
White to off-white solid powder
LogP
-30.8
tPSA
2090
氢键供体(HBD)数目
70
氢键受体(HBA)数目
77
可旋转键数目(RBC)
170
重原子数目
342
分子复杂度/Complexity
11800
定义原子立体中心数目
42
SMILES
S(C)CC[C@@H](C(N[C@@H](CCC(=O)O)C(N[C@@H](CCC(=O)O)C(N[C@@H](CCC(=O)O)C(N[C@@H](C)C(N[C@H](C(N[C@@H](CCCNC(=N)N)C(N[C@H](C(N[C@@H](CC1C=CC=CC=1)C(N[C@H](C(N[C@@H](CCC(=O)O)C(N[C@@H](CC1=CNC2C=CC=CC1=2)C(N[C@@H](CC(C)C)C(N[C@@H](CCCCN)C(N[C@@H](CC(N)=O)C(NCC(NCC(N1CCC[C@H]1C(N[C@@H](CO)C(N[C@@H](CO)C(NCC(N[C@@H](C)C(N1CCC[C@H]1C(N1CCC[C@H]1C(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N)=O)CCCCN)=O)CCCCN)=O)CCCCN)=O)CCCCN)=O)CCCCN)=O)CCCCN)=O)CO)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)[C@@H](C)CC)=O)=O)CC(C)C)=O)=O)C(C)C)=O)=O)=O)=O)=O)NC([C@H](CCC(N)=O)NC([C@H](CCCCN)NC([C@H](CO)NC([C@H](CC(C)C)NC([C@H](CC(=O)O)NC([C@H](CO)NC([C@H]([C@@H](C)O)NC([C@H](CC1C=CC=CC=1)NC([C@H]([C@@H](C)O)NC(CNC([C@H](CCC(=O)O)NC(CNC([C@H](CC1=CN=CN1)N)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O)=O
InChi Key
XVVOERDUTLJJHN-IAEQDCLQSA-N
InChi Code
InChI=1S/C215H347N61O65S/c1-16-115(10)173(210(337)256-141(68-74-170(299)300)194(321)261-148(94-122-98-232-126-50-24-23-49-124(122)126)199(326)258-143(89-111(2)3)196(323)247-134(58-32-40-83-223)189(316)262-149(96-160(226)285)180(307)235-100-161(286)233-104-165(290)274-85-42-60-156(274)207(334)267-154(108-280)206(333)265-151(105-277)181(308)237-101-162(287)239-117(12)213(340)276-87-44-62-158(276)214(341)275-86-43-61-157(275)208(335)268-153(107-279)204(331)249-132(56-30-38-81-221)187(314)246-131(55-29-37-80-220)186(313)245-130(54-28-36-79-219)185(312)244-129(53-27-35-78-218)184(311)243-128(52-26-34-77-217)183(310)242-127(176(227)303)51-25-33-76-216)272-201(328)146(92-120-45-19-17-20-46-120)260-197(324)144(90-112(4)5)257-190(317)135(59-41-84-231-215(228)229)255-209(336)172(114(8)9)271-177(304)116(11)240-182(309)138(65-71-167(293)294)251-192(319)139(66-72-168(295)296)252-193(320)140(67-73-169(297)298)253-195(322)142(75-88-342-15)254-191(318)137(63-69-159(225)284)250-188(315)133(57-31-39-82-222)248-203(330)152(106-278)266-198(325)145(91-113(6)7)259-200(327)150(97-171(301)302)263-205(332)155(109-281)269-212(339)175(119(14)283)273-202(329)147(93-121-47-21-18-22-48-121)264-211(338)174(118(13)282)270-164(289)103-236-179(306)136(64-70-166(291)292)241-163(288)102-234-178(305)125(224)95-123-99-230-110-238-123/h17-24,45-50,98-99,110-119,125,127-158,172-175,232,277-283H,16,25-44,51-97,100-109,216-224H2,1-15H3,(H2,225,284)(H2,226,285)(H2,227,303)(H,230,238)(H,233,286)(H,234,305)(H,235,307)(H,236,306)(H,237,308)(H,239,287)(H,240,309)(H,241,288)(H,242,310)(H,243,311)(H,244,312)(H,245,313)(H,246,314)(H,247,323)(H,248,330)(H,249,331)(H,250,315)(H,251,319)(H,252,320)(H,253,322)(H,254,318)(H,255,336)(H,256,337)(H,257,317)(H,258,326)(H,259,327)(H,260,324)(H,261,321)(H,262,316)(H,263,332)(H,264,338)(H,265,333)(H,266,325)(H,267,334)(H,268,335)(H,269,339)(H,270,289)(H,271,304)(H,272,328)(H,273,329)(H,291,292)(H,293,294)(H,295,296)(H,297,298)(H,299,300)(H,301,302)(H4,228,229,231)/t115-,116-,117-,118+,119+,125-,127-,128-,129-,130-,131-,132-,133-,134-,135-,136-,137-,138-,139-,140-,141-,142-,143-,144-,145-,146-,147-,148-,149-,150-,151-,152-,153-,154-,155-,156-,157-,158-,172-,173-,174-,175-/m0/s1
化学名
(4S)-5-[[2-[[(2S,3R)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[2-[[2-[(2S)-2-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[(2S)-2-[(2S)-2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1,6-diamino-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-2-oxoethyl]amino]-2-oxoethyl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-2-oxoethyl]amino]-4-[[2-[[(2S)-2-amino-3-(1H-imidazol-5-yl)propanoyl]amino]acetyl]amino]-5-oxopentanoic acid
别名
AVE0010Adlyxin; Lyxumia; ZP10A peptide; Lixisenatide Acetate; 1997361-87-1; Lixisenatide acetate (320367-13-3 free base); ZP10 A peptide; ZP10-A peptide; AVE-0010; AVE 0010
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

注意: 请将本产品存放在密封且受保护的环境中,避免吸湿/受潮。
运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
H2O: ~50 mg/mL (~9.6 mM)
溶解度 (体内实验)

Note: 如何溶解多肽产品?请参考本产品网页右上角“产品说明书”文件,第4页。
配方 1 中的溶解度: 100 mg/mL (19.16 mM) in PBS (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液; 超声助溶。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 0.2058 mL 1.0291 mL 2.0583 mL
5 mM 0.0412 mL 0.2058 mL 0.4117 mL
10 mM 0.0206 mL 0.1029 mL 0.2058 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

临床试验信息
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05804513 Recruiting Drug: Placebo
Drug: Lixisenatide 10 micrograms
(50 micrograms/ml in 3 ml)
Pen Injector
Healthy
Type 1 Diabetes
University of Tartu April 17, 2023 Phase 4
NCT02020629 Completed Drug: Lixisenatide Type 2 Diabetes Lund University December 2013 Phase 4
NCT02049034 Completed Other: Lixisenatide
Other: Placebo
Type 2 Diabetes University of Surrey January 2014 Phase 4
NCT03439943 Completed Drug: Lixisenatide
Drug: placebo
Parkinson Disease University Hospital, Toulouse June 13, 2018 Phase 2
NCT02276196 Completed Drug: Lixisenatide
Drug: Insulin glulisine
Diabetic Kidney Disease
Diabetic Nephropathy
Amsterdam UMC, location VUmc September 2014 Phase 4
生物数据图片
  • Blood glucose concentrations and postprandial glucose in response to standardized meals at breakfast, lunch and dinner at baseline and Day 28 in patients with type 2 diabetes after administration of lixisenatide or placebo (mean ± standard error). Regul Pept . 2013 Aug 10:185:1-8.
  • Correlation between change in postprandial glucagon and change in a postprandial glucose and b HbA1c in the lixisenatide treatment arm and the placebo arm at Week 24. CI Confidence interval. Diabetes Ther . 2016 Sep;7(3):583-90.
联系我们