N-desmethyl Enzalutamide (N-desmethyl MDV 3100)

别名: N-desmethyl MDV 3100; N-desmethyl MDV-3100; N-desmethyl enzalutamide; 1242137-16-1; N-desmethylenzalutamide; 4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorobenzamide; CHEMBL5171907; N-desmethyl MDV3100 4-[3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基]-2-氟苯甲酰胺; N-脱甲基 恩扎鲁胺;N-脱甲基 恩扎鲁胺-D6;4-[3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基]-2-氟苯甲酰
目录号: V33450 纯度: ≥98%
N-去甲基恩杂鲁胺 (N-去甲基 MDV 3100) 是恩杂鲁胺的活性代谢物,恩杂鲁胺是一种新型、有效、口服生物可利用、有机、非甾体小分子、第二代雄激素受体 (AR) 拮抗剂。
N-desmethyl Enzalutamide (N-desmethyl MDV 3100) CAS号: 1242137-16-1
产品类别: Androgen Receptor
产品仅用于科学研究,不针对患者销售
规格 价格 库存 数量
10 mM * 1 mL in DMSO
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of N-desmethyl Enzalutamide (N-desmethyl MDV 3100):

  • Enzalutamide-d6 (MDV3100-d6)
  • Enzalutamide carboxylic acid-d6
  • N-desmethyl Enzalutamide-d6
  • 恩杂鲁胺
  • 恩扎鲁胺羧酸代谢物
点击了解更多
InvivoChem产品被CNS等顶刊论文引用
纯度/质量控制文件

纯度: ≥98%

产品描述
N-去甲基恩杂鲁胺 (N-去甲基 MDV 3100) 是恩杂鲁胺的活性代谢物,恩杂鲁胺是一种新型、有效、口服生物可利用、有机、非甾体小分子、第二代雄激素受体 (AR) 拮抗剂。 Enzalutamide 是一种雄激素受体 (AR) 拮抗剂,在 LNCaP 细胞中的 IC50 为 36 nM。
生物活性&实验参考方法
靶点
AR/Androgen-receptor
体外研究 (In Vitro)
n-去甲基zalutamide是由4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧-2-硫氧咪唑烷-1-基}-2-氟苯甲酸的羧基与氨缩合而成的一种苯酰胺。它具有抗肿瘤剂和雄激素拮抗剂的作用。它是苯酰胺、咪唑烷酮、腈、硫羰基化合物、(三氟甲基)苯和单氟苯的成员。
体内研究 (In Vivo)
由于 N-去亚甲基杂鲁胺比恩杂鲁胺更有效,并且显示出相似的主要功效和次要药效,因此 N-去亚甲基杂鲁胺是一种活性佐剂,可能在恩杂鲁胺的临床效果中发挥作用。恩杂鲁胺的葡萄糖胺代谢物具有药理学惰性,其循环浓度比恩杂鲁胺低约 25% [1]。
吉非罗齐联合给药使恩杂鲁胺与活性代谢物从零到无穷时血浆浓度-时间曲线下的复合面积(AUC∞)增加2.2倍,伊曲康唑联合给药使复合AUC∞增加1.3倍。恩杂鲁胺对口服吡格列酮暴露没有影响。恩杂鲁胺使口服s -华法林、奥美拉唑和咪达唑仑的AUC∞分别降低56%、70%和86%;因此,恩杂鲁胺是CYP2C9和CYP2C19的中度诱导剂,是CYP3A4的强诱导剂。 结论:如果患者需要与恩杂鲁胺同时使用强CYP2C8抑制剂,那么恩杂鲁胺的剂量应减少至80mg /天。建议避免enzalutamide与CYP2C9、CYP2C19或CYP3A4代谢的窄治疗指数药物同时使用,因为enzalutamide可能会减少它们的暴露。[1]
酶活实验
以CYP2C8、CYP2C9、CYP2C19和CYP3A4为底物的研究。恩杂鲁胺及其主要代谢物的药代动力学参数(表4)证实,本研究中的血浆暴露与其他研究中观察到的结果相似,在其他研究中,恩杂鲁胺以160 mg每日一次的剂量给药至稳定状态[4]。对enzalutamide、n -去甲基enzalutamide、羧酸代谢物以及enzalutamide + n -去甲基enzalutamide的和的平均through值分别为12.0、10.6、6.32和23.0 μg/mL。[1]
动物实验
A parallel-treatment design (n = 41) was used to evaluate the effects of a strong cytochrome P450 (CYP) 2C8 inhibitor (oral gemfibrozil 600 mg twice daily) or strong CYP3A4 inhibitor (oral itraconazole 200 mg once daily) on the pharmacokinetics of enzalutamide and its active metabolite N-desmethyl enzalutamide after a single dose of enzalutamide (160 mg). A single-sequence crossover design (n = 14) was used to determine the effects of enzalutamide 160 mg/day on the pharmacokinetics of a single oral dose of sensitive substrates for CYP2C8 (pioglitazone 30 mg), CYP2C9 (warfarin 10 mg), CYP2C19 (omeprazole 20 mg), or CYP3A4 (midazolam 2 mg).[1]
药代性质 (ADME/PK)
Study with Strong CYP2C8 and CYP3A4 Inhibitors As evidenced in Fig. 2, gemfibrozil decreased the rates of elimination of enzalutamide and formation of N-desmethyl enzalutamide while increasing the rate of formation of the carboxylic acid metabolite; these rates changed suddenly when gemfibrozil was discontinued on day 22. Given the apparent changes in pharmacokinetics of N-desmethyl enzalutamide after discontinuation of gemfibrozil, extrapolation of the observed concentration–time data in the terminal phase could not be used to estimate the magnitude of the effect of gemfibrozil on AUC∞. To address this issue, pharmacokinetic models were used to simulate concentration–time profiles for enzalutamide and metabolites for enzalutamide administered alone and enzalutamide coadministered with continuous gemfibrozil (i.e., no discontinuation on day 22) (Electronic Supplementary Material 1). Simulated concentration–time data for each of the 41 subjects in the study were then analyzed by NCA methods to estimate AUC∞ values. As AUC18 d and Cmax were defined by plasma concentration–time data prior to gemfibrozil discontinuation on day 22, these parameters were estimated by NCA analysis of observed data. [1]
As indicated by the geometric mean ratios (GMRs; Table 3), gemfibrozil had the following effects on enzalutamide and the active metabolite: for enzalutamide, AUC18 d and AUC∞ increased by 2.53-fold and 4.26-fold, respectively, while Cmax decreased by 18 %; for N-desmethyl enzalutamide, AUC18 d, AUC∞, and Cmax decreased by 67, 25, and 44 %, respectively; and for the composite sum of enzalutamide plus N-desmethyl enzalutamide, AUC18 d and AUC∞ increased by 1.39-fold and 2.17-fold, respectively, while Cmax decreased by 16 %. Notably, the estimated magnitude of the effect of gemfibrozil on the sum of exposure to active moieties (enzalutamide plus N-desmethyl enzalutamide) was smaller for the AUC term based on observed data (AUC18 d) than for the AUC term based on modeling and simulation (AUC∞).[1]
Itraconazole appeared to have only a small impact on the elimination of enzalutamide and the rates of formation of N-desmethyl enzalutamide and the carboxylic acid metabolite (Fig. 2); therefore, all pharmacokinetic parameters for assessing the itraconazole drug interaction were based on observed data. As indicated by the GMR values (Table 3), itraconazole had the following effects on enzalutamide and the active metabolite: for enzalutamide, AUC18 d and AUC∞ increased 1.34-fold and 1.41-fold, respectively, while Cmax decreased by 2 %; for N-desmethyl enzalutamide, AUC18 d decreased by 4 %, AUC∞ increased 1.21-fold, and Cmax decreased by 14 %; and for the sum of enzalutamide plus N-desmethyl enzalutamide, AUC18 d and AUC∞ increased 1.14-fold and 1.28-fold, respectively, while Cmax decreased by 3 %.[1]
毒性/毒理 (Toxicokinetics/TK)
No deaths, serious adverse events, or adverse events resulting in discontinuation occurred during the healthy subject study with CYP2C8 and CYP3A4 inhibitors. Thirteen subjects (three in arm 1, six in arm 2, and four in arm 3) experienced at least one treatment-emergent adverse event (TEAE). All events were categorized as National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) grade 1, with the exception of grade 2 flatulence in one subject (arm 2) that was attributed to a possible relationship to gemfibrozil. Four additional subjects experienced at least one TEAE that was attributed a possible relationship to the study drug. All TEAEs resolved by the end of the study. In the patient study with CYP substrates, the most frequent TEAEs (i.e., in at least three of 14 patients, ≥21.4 %) were nausea, constipation, dizziness, arthropod bite, fatigue, and hot flush. The majority of reported TEAEs were NCI-CTCAE grade 1 or 2. One patient experienced a single and transient episode of generalized tonic–clonic seizure that was assessed as probably related to enzalutamide and led to discontinuation of study treatment with enzalutamide. No clinically significant changes were noted for safety laboratory tests or electrocardiograms.[1]
参考文献

[1]. Pharmacokinetic Drug Interaction Studies with Enzalutamide. Clin Pharmacokinet. 2015 Oct;54(10):1057-69.

其他信息
N-desmethylenzalutamide is a benzamide obtained by formal condensation of the carboxy group of 4-{3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl}-2-fluorobenzoic acid with ammonia. It has a role as an antineoplastic agent and an androgen antagonist. It is a member of benzamides, an imidazolidinone, a nitrile, a thiocarbonyl compound, a member of (trifluoromethyl)benzenes and a member of monofluorobenzenes.
*注: 文献方法仅供参考, InvivoChem并未独立验证这些方法的准确性
化学信息 & 存储运输条件
分子式
C₂₀H₁₄F₄N₄O₂S
分子量
450.41
精确质量
450.077
元素分析
C, 53.33; H, 3.13; F, 16.87; N, 12.44; O, 7.10; S, 7.12
CAS号
1242137-16-1
相关CAS号
Enzalutamide;915087-33-1;N-desmethyl Enzalutamide-d6;Enzalutamide carboxylic acid;1242137-15-0
PubChem CID
70678916
外观&性状
White to off-white solid powder
LogP
4.562
tPSA
122.52
氢键供体(HBD)数目
1
氢键受体(HBA)数目
8
可旋转键数目(RBC)
3
重原子数目
31
分子复杂度/Complexity
824
定义原子立体中心数目
0
InChi Key
JSFOGZGIBIQRPU-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H14F4N4O2S/c1-19(2)17(30)27(11-4-3-10(9-25)14(7-11)20(22,23)24)18(31)28(19)12-5-6-13(16(26)29)15(21)8-12/h3-8H,1-2H3,(H2,26,29)
化学名
4-[3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5-dimethyl-4-oxo-2-sulfanylideneimidazolidin-1-yl]-2-fluorobenzamide
别名
N-desmethyl MDV 3100; N-desmethyl MDV-3100; N-desmethyl enzalutamide; 1242137-16-1; N-desmethylenzalutamide; 4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorobenzamide; CHEMBL5171907; N-desmethyl MDV3100
HS Tariff Code
2934.99.9001
存储方式

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

运输条件
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
溶解度数据
溶解度 (体外实验)
DMSO : ~100 mg/mL (~222.02 mM)
溶解度 (体内实验)
配方 1 中的溶解度: ≥ 2.5 mg/mL (5.55 mM) (饱和度未知) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将100 μL 25.0 mg/mL澄清DMSO储备液加入到400 μL PEG300中,混匀;然后向上述溶液中加入50 μL Tween-80,混匀;加入450 μL生理盐水定容至1 mL。
*生理盐水的制备:将 0.9 g 氯化钠溶解在 100 mL ddH₂O中,得到澄清溶液。

配方 2 中的溶解度: ≥ 2.5 mg/mL (5.55 mM) (饱和度未知) in 10% DMSO + 90% Corn Oil (这些助溶剂从左到右依次添加,逐一添加), 澄清溶液。
例如,若需制备1 mL的工作液,可将 100 μL 25.0 mg/mL 澄清 DMSO 储备液加入到 900 μL 玉米油中并混合均匀。

请根据您的实验动物和给药方式选择适当的溶解配方/方案:
1、请先配制澄清的储备液(如:用DMSO配置50 或 100 mg/mL母液(储备液));
2、取适量母液,按从左到右的顺序依次添加助溶剂,澄清后再加入下一助溶剂。以 下列配方为例说明 (注意此配方只用于说明,并不一定代表此产品 的实际溶解配方):
10% DMSO → 40% PEG300 → 5% Tween-80 → 45% ddH2O (或 saline);
假设最终工作液的体积为 1 mL, 浓度为5 mg/mL: 取 100 μL 50 mg/mL 的澄清 DMSO 储备液加到 400 μL PEG300 中,混合均匀/澄清;向上述体系中加入50 μL Tween-80,混合均匀/澄清;然后继续加入450 μL ddH2O (或 saline)定容至 1 mL;

3、溶剂前显示的百分比是指该溶剂在最终溶液/工作液中的体积所占比例;
4、 如产品在配制过程中出现沉淀/析出,可通过加热(≤50℃)或超声的方式助溶;
5、为保证最佳实验结果,工作液请现配现用!
6、如不确定怎么将母液配置成体内动物实验的工作液,请查看说明书或联系我们;
7、 以上所有助溶剂都可在 Invivochem.cn网站购买。
制备储备液 1 mg 5 mg 10 mg
1 mM 2.2202 mL 11.1010 mL 22.2020 mL
5 mM 0.4440 mL 2.2202 mL 4.4404 mL
10 mM 0.2220 mL 1.1101 mL 2.2202 mL

1、根据实验需要选择合适的溶剂配制储备液 (母液):对于大多数产品,InvivoChem推荐用DMSO配置母液 (比如:5、10、20mM或者10、20、50 mg/mL浓度),个别水溶性高的产品可直接溶于水。产品在DMSO 、水或其他溶剂中的具体溶解度详见上”溶解度 (体外)”部分;

2、如果您找不到您想要的溶解度信息,或者很难将产品溶解在溶液中,请联系我们;

3、建议使用下列计算器进行相关计算(摩尔浓度计算器、稀释计算器、分子量计算器、重组计算器等);

4、母液配好之后,将其分装到常规用量,并储存在-20°C或-80°C,尽量减少反复冻融循环。

计算器

摩尔浓度计算器可计算特定溶液所需的质量、体积/浓度,具体如下:

  • 计算制备已知体积和浓度的溶液所需的化合物的质量
  • 计算将已知质量的化合物溶解到所需浓度所需的溶液体积
  • 计算特定体积中已知质量的化合物产生的溶液的浓度
使用摩尔浓度计算器计算摩尔浓度的示例如下所示:
假如化合物的分子量为350.26 g/mol,在5mL DMSO中制备10mM储备液所需的化合物的质量是多少?
  • 在分子量(MW)框中输入350.26
  • 在“浓度”框中输入10,然后选择正确的单位(mM)
  • 在“体积”框中输入5,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案17.513 mg出现在“质量”框中。以类似的方式,您可以计算体积和浓度。

稀释计算器可计算如何稀释已知浓度的储备液。例如,可以输入C1、C2和V2来计算V1,具体如下:

制备25毫升25μM溶液需要多少体积的10 mM储备溶液?
使用方程式C1V1=C2V2,其中C1=10mM,C2=25μM,V2=25 ml,V1未知:
  • 在C1框中输入10,然后选择正确的单位(mM)
  • 在C2框中输入25,然后选择正确的单位(μM)
  • 在V2框中输入25,然后选择正确的单位(mL)
  • 单击“计算”按钮
  • 答案62.5μL(0.1 ml)出现在V1框中
g/mol

分子量计算器可计算化合物的分子量 (摩尔质量)和元素组成,具体如下:

注:化学分子式大小写敏感:C12H18N3O4  c12h18n3o4
计算化合物摩尔质量(分子量)的说明:
  • 要计算化合物的分子量 (摩尔质量),请输入化学/分子式,然后单击“计算”按钮。
分子质量、分子量、摩尔质量和摩尔量的定义:
  • 分子质量(或分子量)是一种物质的一个分子的质量,用统一的原子质量单位(u)表示。(1u等于碳-12中一个原子质量的1/12)
  • 摩尔质量(摩尔重量)是一摩尔物质的质量,以g/mol表示。
/

配液计算器可计算将特定质量的产品配成特定浓度所需的溶剂体积 (配液体积)

  • 输入试剂的质量、所需的配液浓度以及正确的单位
  • 单击“计算”按钮
  • 答案显示在体积框中
动物体内实验配方计算器(澄清溶液)
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
第二步:请输入动物体内配方组成(配方适用于不溶/难溶于水的化合物),不同的产品和批次配方组成不同,如对配方有疑问,可先联系我们提供正确的体内实验配方。此外,请注意这只是一个配方计算器,而不是特定产品的确切配方。
+
+
+

计算结果:

工作液浓度 mg/mL;

DMSO母液配制方法 mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL)。如该浓度超过该批次药物DMSO溶解度,请首先与我们联系。

体内配方配制方法μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。

(1) 请确保溶液澄清之后,再加入下一种溶剂 (助溶剂) 。可利用涡旋、超声或水浴加热等方法助溶;
            (2) 一定要按顺序加入溶剂 (助溶剂) 。

联系我们